
∑ Series SGMB/SGDB USER'S MANUAL

AC Servomotor and Driver (200V: 22 to 37kW, 400V: 22 to 55kW)

SGMB Servomotor SGDB SERVOPACK

Safety Information

The following conventions are used to indicate precautions in this manual. Failure to heed precautions provided in this manual can result in serious or possibly even fatal injury or damage to the products or to related equipment and systems.

∕!\ WARNING

Indicates precautions that, if not heeded, could possibly result in loss of life or serious injury.

/!\ Caution

Indicates precautions that, if not heeded, could result in relatively serious or minor injury, damage to the product, or faulty operation.

©Yaskawa, 2000

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because Yaskawa is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

Visual Aids

The following aids are used to indicate certain types of information for easier reference.

Indicates application examples.

Indicates supplemental information.

Indicates important information that should be memorized.

Technical terms placed in bold in the text are briefly explained in a "TERMS" section at the bottom of the page. The following kinds of technical terms are explained: Technical terms that need to be explained to users who are not very familiar with servo systems or electronic devices and technical terms specific to Σ -Series Servos that need to be explained in descriptions of functions.

The text indicated by this icon explains the operating procedure using Hand-held Type Digital Operator (Type: JUSP-OP02A-1).

JUSP-OP02A-1

The text indicated by this icon explains the operating procedure using Mount Type Digital Operator (Type: JUSP-OP03A).

OVERVIEW

	Visual Aids	iv
	Overview Using This Manual	x xi
	TABLE OF CONTENTS	
	Safety Precautions	xiii
1	FOR FIRST-TIME USERS OF AC SERVOS	1 - 1
	1.1 Basic Understanding of AC Servos	1 - 2
	1.2 Configuration of Servo System	1 - 5
	1.3 Features of Σ-Series Servos	1 - 11
2	BASIC USES OF Σ-SERIES PRODUCTS	2 - 1
	2.1 Precautions	2-2
	2.2 Installation	2 - 5
	2.3 Connection and Wiring	2 - 14
	2.4 Conducting a Test Run	2 - 27
3	APPLICATIONS OF Σ-SERIES PRODUCTS	3 - 1
	3.1 Setting the Parameters According to Machine Characteristics .	3-5
	3.2 Setting Parameters According to Host Controller	3 - 13
	3.3 Setting Up the Σ SERVOPACK	3 - 44
	3.4 Setting the Stop Mode	3 - 49
	3.5 Running the Motor Smoothly	3 - 56
	3.6 Minimizing Positioning Time	3 - 60
	3.7 Forming a Protective Sequence	3 - 69
	3.8 Special Wiring	3 - 82
4	USING THE DIGITAL OPERATOR	4 - 1
	4.1 Basic Operations	4 - 2
	4.2 Using the Functions	4 - 17
5	SERVO SELECTION AND DATA SHEETS	5 - 1
	5.1 Selecting a Σ-Series Servo	5 - 3
	5.2 SGMB Servomotor	5 - 11
	5.3 SERVOPACK Ratings and Specifications	5 - 18
	5.4 Σ-Series Dimensional Drawings	5 - 25
	5.5 Specifications and Dimensional Drawings of Peripheral Devices	5 - 35
6	INSPECTION, MAINTENANCE, AND	
	TROUBLESHOOTING	6 - 1
	6.1 Inspection and Maintenance	6-2
	6.2 Troubleshooting	6 - 5
•	A. Conso Adjustment	
	A Servo Adjustment	A - 1
	B COMPARISON WITH PREVIOUS SERVOPACKS	B-1
	D List of Parameters	C - 1 D - 1
	E List of Alarm Displays	D-1
	= = = = = = = = = = = = = = = = = = =	F - 1

TABLE OF CONTENTS

Overview	vi
1 FOR FIRST-TIME USERS OF AC SERVOS	1-
1.1 Basic Understanding of AC Servos	1-2
1.1.1 Servo Mechanisms	1-2
1.2 Configuration of Servo System	1-5
1.3 Features of Σ-Series Servos	. 1 - 11
1.3.1 Outline	
1.3.2 Using the SGDB SERVOPACK	1-12
2 BASIC USES OF Σ-SERIES PRODUCTS	2 - 1
2.1 Precautions	. 2-2
2.2 Installation	. 2-5
2.2.1 Checking on Delivery	
2.2.2 Installing the Servomotor	2-7
2.2.3 Allowable Thrust and Radial Shaft Loads	2 - 10
2.2.4 Installing the SERVOPACK	2 - 12
2.2.5 Power Loss	2 - 13
2.3 Connection and Wiring	. 2-14
2.3.1 Connecting to Peripheral Devices	
2.3.2 Main Circuit Wiring and Power ON Sequence	. 2-17
2.3.3 Examples of Connecting I/O Signal Terminals	. 2 - 23
2.4 Conducting a Test Run	. 2 - 27
2.4.1 Test Run in Two Steps	. 2 - 27
2.4.2 Step 1: Conducting a Test Run for Motor without Load	. 2-29
2.4.3 Step 2: Conducting a Test Run with the Motor Connected to the Machine	. 2 - 33
2.4.4 Supplementary Information on Test Run	. 2-34
2.4.5 Minimum Parameters Required and Input Signals	. 2 - 36
APPLICATIONS OF Σ -SERIES PRODUCTS	3 - 1
3.1 Setting the Parameters According to Machine Characteristics .	3 - 5
3.1.1 Changing the Direction of Motor Rotation	. 3-5
3.1.2 Setting the Overtravel Limit Function	3 - 6
3.1.3 Restricting Torque	2.0

3.2 Setting Parameters According to Host Controller	3-13
3.2.1 Inputting the Speed Reference	3 - 13
3.2.2 Inputting the Position Reference	3 - 17
3.2.3 Using Encoder Outputs	3 - 22
3.2.4 Using Contact I/O Signals	
3.2.5 Using the Electronic Gear	3 - 28
3.2.6 Using Torque Control	
3.2.7 Using the Torque Feed-forward Function	
3.2.8 Using Torque Restriction by Analog Voltage Reference	
3.2.9 Using the Reference Pulse Inhibit Function (INHIBIT)	3 - 40
3.2.10 Using the Reference Pulse Input Filter Selection Function	
3.2.11 Using the Analog Monitor	3 - 42
3.3 Setting Up the \(\Sigma\) SERVOPACK	. 3-44
3.3.1 Setting Parameters	3-44
3.3.2 Setting the Jog Speed	
3.3.3 Setting the Number of Encoder Pulses	
3.3.4 Setting the Motor Model	
3.3.5 Adjusting the Encoder Supply Voltage	
, , , , , , , , , , , , , , , , , , , ,	0 40
3.4 Setting the Stop Mode	
3.4.1 Adjusting the Offset	
3.4.2 Using the Dynamic Brake (DB)	
3.4.3 Using the Zero-Clamp	
3.4.4 Using the Holding Brake	3 - 52
3.5 Running the Motor Smoothly	. 3-56
3.5.1 Using the Soft Start Function	3 - 56
3.5.2 Using the Smoothing Function	
3.5.3 Adjusting the Gain	3 - 57
3.5.4 Adjusting the Offset	3 - 58
3.5.5 Setting the Torque Reference Filter Time Constant	3 - 58
3.6 Minimizing Positioning Time	. 3-60
3.6.1 Using the Autotuning Function	3-60
3.6.2 Setting the Servo Gain	3-60
3.6.3 Using Feed-forward Control	3-62
3.6.4 Using Proportional Control	3-62
3.6.5 Setting the Speed Bias	3-63
3.6.6 Using the Mode Switch	3 - 63
3.7 Forming a Protective Sequence	. 3-69
3.7.1 Using the Servo Alarm Output and Alarm Code Output	3-69
3.7.2 Using the Servo ON Input Signal	3-72
3.7.3 Using the Positioning Complete Signal	3-73
3.7.4 Using the Speed Coincidence Output Signal	
3.7.5 Using the Running Output Signal	3-77
3.7.6 Using the OL Warning and Alarm Output Signals	3-79
3.7.7 Using the Servo Ready Output Signal	3 - 80
3.7.8 Handling of Power Loss	3 - 81

3.8 Special Wiring	3 - 82
3.8.1 Wiring Instructions	0.00
3.8.2 Wiring for Noise Control	. 3-82
3.8.3 Using More Than One Servo Drive	3 - 83 3 - 87
3.8.4 Using the Regenerative Resistor Units	3-88
3.8.5 Using an Absolute Encoder	3-00
3.8.6 Connector Terminal Layouts	3 - 89 3 - 99
	o - 99
4 USING THE DIGITAL OPERATOR	4-1
4.1 Basic Operations	
4.1.1 Connecting the Digital Operator	4 - 2
4.1.2 Key Functions	4-2
4.1.3 Resetting Servo Alarms	4 - 4
4.1.4 Basic Functions and Mode Selection	4 - 5
4.1.5 Operation in Status Display Mode	4 - 6
4.1.6 Operation in Parameter Setting Mode	4 - 9
4.1.7 Operation in Monitor Mode	4 - 14
4.2 Using the Functions	4 - 17
4.2.1 Operation in Alarm Trace-back Mode	4 - 17
4.2.2 Operation Using the Digital Operator	4 - 19
4.2.3 Autotuning	4 - 22
4.2.4 Reference Offset Automatic Adjustment	4 - 28
4.2.5 Reference Offset Manual Adjustment Mode	4 - 30
4.2.6 Clearing Alarm Trace-back Data	4 - 33
4.2.7 Checking the Software Version	4 - 35
4.2.8 Current Detection Offset Manual Adjustment Mode	4 - 35
5 SERVO SELECTION AND DATA SHEETS	5_1
5.1 Selecting a Σ-Series Servo	5 - 3
5.1.1 Selecting a Servomotor	5 - 3
5.1.2 Selecting a SERVOPACK	5 - 9
5.1.3 Selecting a Digital Operator	5 - 10
5.2 SGMB Servomotor	5 - 11
5.2.1 Ratings and Specifications	5 - 11
5.2.2 Mechanical Characteristics	5 - 16
5.3 SERVOPACK Ratings and Specifications	5 - 18
5.3.1 Combined Specifications	5 - 18
5.3.2 Ratings and Specifications	5 - 19
5.3.3 Overload Characteristics	5 - 22
5.3.4 Starting Time and Stopping Time	5 - 23
5.3.5 Load Moment of Inertia	5 - 23
5.3.6 Overhanging Loads	5 - 24
5.4 Σ-Series Dimensional Drawings	5 - 25
5.4.1 Servomotor Dimensional Drawings	5 - 25
5.4.2 SERVOPACK Dimensional Drawings	5 - 30
5.4.3 Digital Operator Dimensional Drawings	E 22

	5.5 Specifications and Dimensional Drawings of Peripheral Devices	5 - 35
	5.5.1 Cable Specifications and Peripheral Devices	
	5.5.2 1CN Connector	
	5.5.3 Connector Terminal Block Converter Unit	5 - 37
	5.5.4 Cable With 1CN Connector and One End Without Connector	
	5.5.5 2CN Encoder Connector on SERVOPACK End	
	5.5.6 Encoder Cables	
	5.5.7 Battery for Absolute Encoder	
	5.5.8 Brake Power Supply	
	5.5.9 Circuit Breaker	
	5.5.10 Noise Filter	
	5.5.11 Surge Suppressor	
	5.5.12 Regenerative Resistor Unit	5 - 52
	5.5.13 Dynamic Brake (DB) Unit	5 - 53
	5.5.14 Thermal Relays	5 - 57
	5.5.15 Variable Decistor for Speed Setting	5 - 63
	5.5.15 Variable Resistor for Speed Setting	5 - 64
		5 - 64
_	5.5.17 Cables for Connecting PC and SERVOPACK	5 - 66
6	INSPECTION, MAINTENANCE, AND TROUBLESHOOTING	6-
	6.1 Inspection and Maintenance	6 - 2
	6.1.1 Servomotor	6 - 2
	6.1.2 SERVOPACK	6 - 3
	6.1.3 Replacing Battery for Absolute Encoder	6 - 4
	6.2 Troubleshooting	6 - 5
	6.2.1 Troubleshooting Problems with Alarm Display	6 - 5
	6.2.2 Troubleshooting Problems With No Alarm Display	6 - 28
	6.2.3 Internal Connection Diagram and Instrument Connection Examples	6 - 30
	o.e.o mondi comcolon bidgian and instrument connection examples	6-30
Α	Servo Adjustment	A - 1
	A.1 Σ-Series AC SERVOPACK Gain Adjustment	A - 2
	A.1.1 Σ-Series AC SERVOPACKs and Gain Adjustment Methods	A - 2
	A.1.2 Basic Rules for Gain Adjustment	A - 3
	A.2 Adjusting a Speed-control SERVOPACK	A - 4
	A.2.1 Adjusting Using Auto-tuning	A - 4
	A.2.2 Manual Adjustment	A - 5
	A.3 Adjusting a Position-control SERVOPACK	A - 8
	A.3.1 Adjusting Using Auto-tuning	A - 8
	A.3.2 Manual Adjustment	A - 9
	A.4 Guidelines for Gain Settings According to Load Inertia Ratio .	A - 12

В	COMPARISON WITH PREVIOUS SERVOPACKS	B - 1
ı	B.1 Functional Differences	B - 2
	B.1.1 Dynamic Brake (DB) B.1.2 Contact Input Speed Control	B-2
ı	3.2 Different Parameters and Alarms	B - 3
	B.2.1 Parameters	B - 3 B - 3
С	List of I/O Signals	C - 1
D	List of Parameters	D - 1
Ε	List of Alarm Displays	E - 1
IND	EX Ind	lex - 1

Overview

■ Manual Contents

This manual provides Σ -Series users with information on the following:

- An overview of servo systems for first-time users.
- Checking the product on delivery and basic applications of the servo.
- Servo applications.
- Selecting an appropriate servo for your needs and placing an order.
- Inspection and maintenance.

Using This Manual

■ Basic Terms

Unless otherwise specified, the following definitions are used:

SERVOPACK: An amplifier (Trademark of Yaskawa servo amplifier "S-Series SGDB SERVO-

PACK")

Servodrive: A servomotor and an amplifier (SGDB SERVOPACK)

Servo system: A complete servo control system consisting of servodrive, host controller, and pe-

ripheral devices

Safety Precautions

The following precautions are for checking products on delivery, installation, wiring, operation, maintenance, and inspection.

■ Checking Products on Delivery

Use the specified combination of servomotor and SERVOPACK.
 Failure to observe this caution may lead to fire or failure.

■ Installation

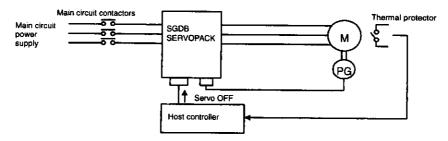
 Never use the equipment where it may be exposed to splashes of water, corrosive or flammable gases, or near flammable materials.

Failure to observe this caution may lead to electric shock or fire.

■ Wiring

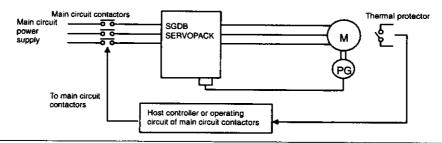
⚠ WARNING

Grounding must be in accordance with the national code and consistent with sound local practices.


Failure to observe this warning may result in electric shock or fire.

Use the thermal protector built into the servomotor according to either of the two following methods.

SGMB servomotors are cooled by a fan. If the fan is defective or power to the fan is disconnected, heat from the motor may result in burns or fire.


• Method 1:

Wire the output from the thermal protector to the host controller and turn OFF the servo when the thermal protector operates.

• Method 2:

Wire the thermal protector to the operating circuit of the main circuit contactors or the host controller and turn OFF the main circuit when the thermal protector operates.

- Do not connect three-phase power supply to output terminals (1) (V) and (W). Failure to observe this caution may result in personal injury or fire.
- Securely tighten screws on the power supply and motor output terminals.
 Failure to observe this caution may result in a fire.

■ Operation

WARNING

 Never touch any rotating motor parts during operation. Failure to observe this warning may result in personal injury.

Caution

- To avoid inadvertent accidents, run the servomotor only in test run (without load). Failure to observe this caution may result in personal injury.
- Before starting operation with a load connected, set up parameters suitable for the machine. Starting operation without setting up parameters may result in overrun failure.
- Before starting operation with a load connected, make sure emergency-stop procedures are in place.

Failure to observe this caution may result in personal injury.

• During operation, do not touch the heat sink. Failure to observe this caution may result in burns.

■ Maintenance and Inspection

WARNING

• Be sure to turn OFF power before inspection or maintenance.

Failure to observe this warning may result in electric shock.

 Never open the terminal cover while power is ON, and never turn ON power when the terminal cover is open.

Failure to observe this warning may result in electric shock.

 After turning OFF power, wait at least five minutes before servicing the product. Failure to observe this warning may result in residual electric charges causing electric shock.

♠ Caution

• Do not disassemble the servomotor.

Failure to observe this caution may result in electric shock or personal injury.

△ Caution

Never change wiring while power is ON.
 Failure to observe this caution may result in electric shock or personal injury.

■ General Precautions

Note the following to ensure safe application.

- Some drawings in this manual are shown with the protective cover or shields removed, in order to
 describe the detail with more clarity. Make sure all covers and shields are replaced before operating this product.
- Some drawings in this manual are shown as typical example and may differ from the shipped product.
- This manual may be modified when necessary because of improvement of the product, modification or changes in specifications.
 - Such modification is made as a revision by renewing the manual No.
- To order a copy of this manual, if your copy has been damaged or lost, contact your YASKAWA representative listed on the last page stating the manual No. on the front cover.
- YASKAWA is not responsible for accidents or damages due to any modification of the product made by the user since that will void our guarantee.

FOR FIRST-TIME USERS OF AC SERVOS

This chapter is intended for first-time users of AC servos. It describes the basic configuration of a servo mechanism and basic technical terms relating to servos.

Users who already have experience in using a servo should also take a look at this chapter to understand the features of Σ -Series AC Servos.

1.1	Basic Understanding of AC Servos	1 - 2
	1.1.1 Servo Mechanisms	1 - 2
	1.1.2 Technical Terms	1 - 4
1.2	Configuration of Servo System	1 - 5
1.3	Features of Σ -Series Servos	1 - 11
	1.3.1 Outline	1 - 11
	1.3.2 Using the SGDB SERVOPACK	1 - 12

1.1.1 Servo Mechanisms

1.1 Basic Understanding of AC Servos

This section describes the basic configuration of a servo mechanism and technical terms relating to servos and also explains the features of Σ -Series AC Servos.

1.1.1 Servo Mechanisms

You may be familiar with the following terms:

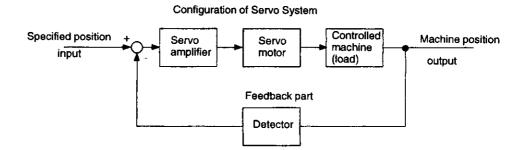
- Servo
- Servo mechanism
- Servo control system

In fact, these terms are synonymous. They have the following meaning:

A control mechanism that monitors physical quantities such as specified positions.

In short, a servo mechanism is like a servant who does tasks faithfully and quickly according to his master's instructions. In fact, "servo" originally derives from the word "servant."

Servo mechanism


According to Japanese Industrial Standard (JIS) terminology, a "servo mechanism" is defined as a mechanism that uses the position, direction, or orientation of an object as a process variable to control a system to follow any changes in a target value (set point).

More simply, a servo mechanism is a control mechanism that monitors physical quantities such as specified positions. Feedback control is normally performed by a servo mechanism. (Source: JIS B0181)

Servo system could be defined in more detail as a mechanism that:

- Moves at a specified speed and
- Locates an object in a specified position

To develop such a servo system, an automatic control system involving feedback control must be designed. This automatic control system can be illustrated in the following block diagram:

This servo system is an automatic control system that detects the machine position (output data), feeds back the data to the input side, compares it with the specified position (input data), and moves the machine by the difference between the compared data.

In other words, the servo system is a system to control the output data to match the specified input data.

If, for example, the specified position changes, the servo system will reflect the changes.

In the above example, input data is defined as a position, but input data can be any physical quantities such as orientation (angle), water pressure, or voltage.

Position, speed, force (torque), electric current, and so on are typical controlled values for a servo system.

Feedback control

A control method in which process variables are returned to the input side to form a closed loop. It is also called closed-loop control.

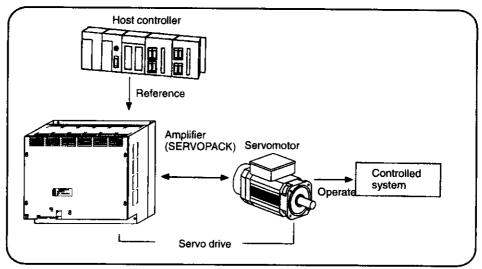
If a negative signal is returned to the input side, it is called negative feedback control. Normally, negative feedback control is used to stabilize the system. If feedback is not returned, the control method is called open-loop control.

1.1.2 Technical Terms

1.1.2 Technical Terms

The main technical terms used in this manual are as follows:

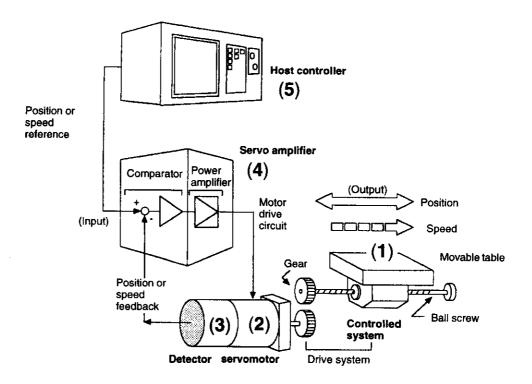
Servo mechanism


Servo

Normally, servo is synonymous with servo mechanism. However, because "mechanism" is omitted, the meaning becomes somewhat ambiguous. Servo may refer to the entire servo mechanism but may also refer to an integral part of a servo mechanism such as a servomotor or a servo amplifier. This manual also follows this convention in the use of the term "servo".

Servo control system

Servo control system is almost synonymous with servo mechanism but places the focus on system control. In this manual, the term "servo system" is also used as a synonym of servo control system.


Related Terms	Meaning	
Servomotor	General servomotors or Yaskawa SGMB servomotors. In some cases, a position detector (encoder) is included in a servomotor.	
SERVOPACK	Trademark of Yaskawa servo amplifier "SGDB SERVOPACK."	
Servo drive	A servomotor and amplifier pair. Also called "servo."	
Servo system	A closed control system consisting of a host controller, servo drive and controlled system to form a servo mechanism.	

Servo system

1.2 Configuration of Servo System

The following diagram illustrates a servo system in detail:

(1) Controlled system: Mechanical system for which the position or speed is to be controlled.

This includes a drive system that transmits torque from a servomotor.

(2) Servomotor: A main actuator that moves a controlled system. Two types are avail-

able: AC servomotor and DC servomotor.

(3) Detector: A position or speed detector. Normally, an encoder mounted on a mo-

tor is used as a position detector.

(4) Servo amplifier: An amplifier that processes an error signal to correct the difference

between a reference and feedback data and operates the servomotor accordingly. A servo amplifier consists of a comparator, which processes error signals, and a power amplifier, which operates the servo-

motor.

(5) Host controller: A device that controls a servo amplifier by specifying a position or

speed as a set point.

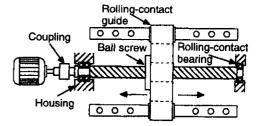
Servo components (1) to (5) are outlined below:

1. Controlled system

In the previous figure, the controlled system is a movable table for which the position or speed is controlled. The movable table is driven by a ball screw and is connected to the servomotor via gears.

So, the drive system consists of:

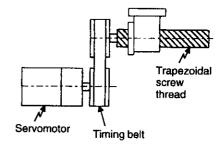
a) Gears + Ball Screw


This drive system is most commonly used because the power transmission ratio (gear ratio) can be freely set to ensure high positioning accuracy. However, play in the gears must be minimized.

The following drive system is also possible when the controlled system is a movable table:

b) Coupling + Ball Screw

When the power transmission ratio is 1:1, a coupling is useful because it has no play.


This drive system is widely used for machining tools.

c) Timing Belt + Trapezoidal Screw Thread

A timing belt is a coupling device that allows the power transmission ratio to be set freely and that has no play.

A trapezoidal screw thread does not provide excellent positioning accuracy, so can be treated as a minor coupling device.

To develop an excellent servo system, it is important to select a rigid drive system that has no play.

Configure the controlled system by using an appropriate drive system for the control purpose.

Drive system

Also called a drive mechanism.

A drive system connects an actuator (such as a servomotor) to a controlled system and serves as a mechanical control component that transmits torque to the controlled system, orientates the controlled system, and converts motion from rotation to linear motion and vice versa.

2. Servomotor

a) DC Servomotor and AC Servomotor

Servomotors are divided into two types: DC servomotors and AC servomotors.

DC servomotors are driven by direct current (DC). They have a long history. Up until the 1980s, the term "servomotor" used to imply a DC servomotor.

From 1984, AC servomotors were emerging as a result of rapid progress in microprocessor technology. Driven by alternating current (AC), AC servomotors are now widely used because of the following advantages:

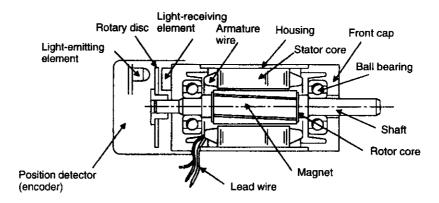
• Easy maintenance: No brush

High speed:

No limitation in rectification rate

Note however that servomotors and SERVOPACKs use some parts that are subject to mechanical wear or aging. For preventive maintenance, inspect and replace parts at regular intervals.

For details, refer to Chapter 6 Inspection, Maintenance, and Troubleshooting.


b) AC Servomotor

AC servomotors are divided into two types: Synchronous type and induction type. The synchronous type is more commonly used.

For a synchronous type servomotor, motor speed is controlled by changing the frequency of alternating current.

A synchronous type servomotor provides strong holding torque when stopped, so this type is ideal when precise positioning is required. Use this type for a servo mechanism for position control.

The following figure illustrates the structure of a synchronous type servomotor:

Yaskawa SGM□ servomotors are of the synchronous type.

c) Performance of Servomotor

A servomotor must have "instantaneous power" so that it can start as soon as a start reference is received.

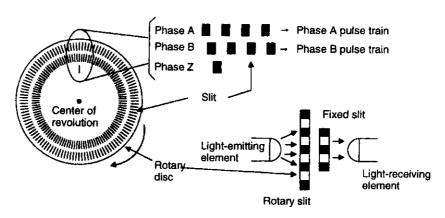
The term "power rating (kW/s)" is used to represent instantaneous power.

It refers to the electric power (kW) that a servomotor generates per second.

The greater the power rating, the more powerful the servomotor.

3. Detector

A servo system requires a position or speed detector. It uses an encoder mounted on a servomotor for this purpose.


Encoders are divided into the following two types:

a) Incremental Encoder

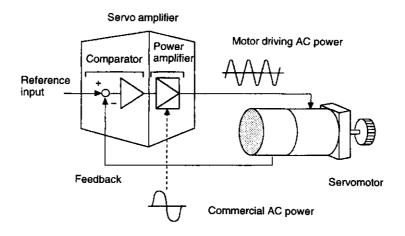
An incremental encoder is a pulse generator, which generates a certain number of pulses per revolution (e.g., 2,000 pulses per revolution). If this encoder is connected to the mechanical system and one pulse is defined as a certain length (e.g., 0.001 mm), it can be used as a position detector.

However, this encoder does not detect an absolute position and merely outputs a pulse train. Hence zero point return operation must be performed before positioning.

The following figure illustrates the operation principle of a pulse generator:

b) Absolute Encoder

An absolute encoder is designed to detect an absolute angle of rotation as well as to perform the general functions of an incremental encoder. With an absolute encoder, therefore, it is possible to create a system that does not require zero point return operation at the beginning of each operation.


Difference between an absolute and incremental encoder:

An absolute encoder will keep track of the motor shaft position even if system power is lost and some motion occurs during that period of time. The incremental encoder is incapable of the above.

4. Servo amplifier

A servo amplifier is required to operate an AC servomotor.

The following figure illustrates the configuration of a servo amplifier:

A servo amplifier consists of the following two sections:

a) Comparator

A comparator consists of a comparison function and a control function. The comparison function compares reference input (position or speed) with a feedback signal and generates a differential signal.

The control function amplifies and transforms the differential signal. In other words, it performs proportional (P) control or **proportional/integral** (PI) control. (It is not important if you do not understand these control terms completely at this point.)

b) Power Amplifier

A power amplifier runs the servomotor at a speed or torque proportional to the output of the comparator. In other words, from the commercial power supply of 50/60 Hz, it generates alternating current with a frequency proportional to the reference speed and runs the servomotor with this current.

Proportional/integral (PI) control

PI control provides more accurate position or speed control than proportional control, which is more commonly used.

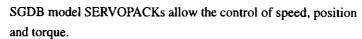
5. Host Controller

A host controller controls a servo amplifier by specifying a position or speed as a set point. For speed reference, a position control loop may be formed in the host controller when a position feedback signal is received. Yaskawa **PROGIC-8** is a typical host controller.

PROGIC-8

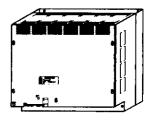
A programmable machine controller. If combined with a servo amplifier for speed control (maximum eight axis control), the PROGIC-8 can provide position control.

The PROGIC-8 also provides programmable controller functions.


1.3 Features of Σ -Series Servos

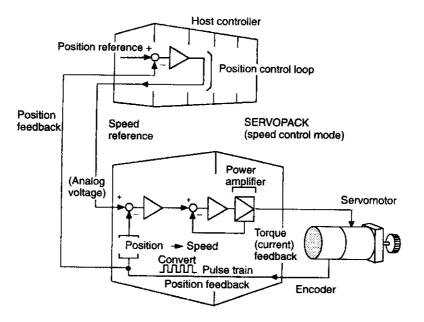
A Σ-Series Servo consists of an SGMB servomotor and an SGDB SERVOPACK.

1.3.1 Outline


 Σ -Series SGMB servomotors are synchronous type servomotors and have the following features:

Rated rotation speed Maximum rotation speed	Voltage	Maximum torque	Rated out- put
1500 r/min 2000 r/min	200 V	200% 250%	22 to 37 kW (6 models)
	400 V		22 to 55 kW (10 models)

- Speed control (analog reference)
 Accepts an analog voltage speed reference.
- Position control (pulse reference)
 Accepts a pulse train position reference
- Torque control (analog reference)
 Accepts an analog voltage torque reference

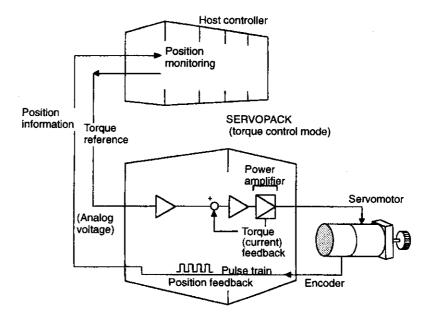


SGDB SERVOPACK

1.3.2 Using the SGDB SERVOPACK

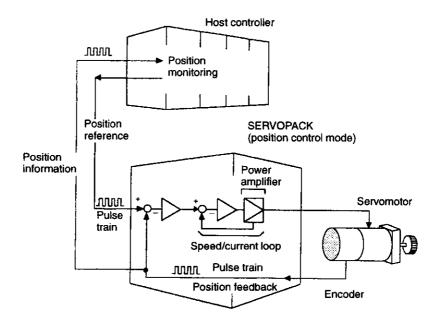
The most common use of a SERVOPACK for speed control is shown below:

Using the SERVOPACK for Speed Control



As shown in the above figure, a position control loop is formed in the host controller. The host controller compares a position reference with a position feedback signal and sends the processed result to the SERVOPACK as a speed reference.

In this way the host controller can be freed from performing the servo mechanism control. The SERVOPACK undertakes the speed control loop and subsequent control processing.


The Yaskawa programmable machine controller PROGIC-8 is used as a typical host controller.

Using the SERVOPACK for Torque Control

The host controller outputs a torque reference to control the SERVOPACK. It also receives a pulse train (position information) from the SERVOPACK and uses it to monitor the position.

Using the SERVOPACK for Position Control

The host controller can send a position reference (pulse train) to the SERVOPACK to perform positioning or interpolation.

This type of SERVOPACK contains a position control loop.

Parameters can be used to select either of the following pulse trains:

1.3.2 Using the SGDB SERVOPACK

- a) Code and pulse train
- b) Two-phase pulse train with 90° phase difference
- c) Forward and reverse pulse trains

The host controller receives a pulse train (position information) from the SERVO-PACK and uses it to monitor the position.

Parameters

- A Digital Operator can be used to set parameters for a SERVOPACK as follows:
 - a) Setting parameters to enable or disable each function
 - **b)** Setting parameters required for functions to be used

 Set parameters according to the servo system to be set up.

2

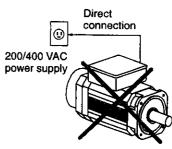
BASIC USES OF Σ -SERIES PRODUCTS

This chapter describes the first things to do when Σ -Series products are delivered. It also explains the most fundamental ways of connecting and operating Σ -Series products. Both first-time and experienced servo users **must read** this chapter.

2.1	Preca	utions	2 - 2
2.2	Instal	lation	2 - 5
	2.2.1	Checking on Delivery	2 - 5
	2.2.2	Installing the Servomotor	2 - 7
	2.2.3	Allowable Thrust and Radial Shaft Loads	2 - 10
	2.2.4	Installing the SERVOPACK	2 - 12
	2.2.5	Power Loss	2 - 13
2.3	Conne	ection and Wiring	2 - 14
	2.3.1	Connecting to Peripheral Devices	2 - 14
	2.3.2	Main Circuit Wiring and Power ON Sequence	2 - 17
	2.3.3	Examples of Connecting I/O Signal Terminals	2 - 23
2.4	Cond	ucting a Test Run	2 - 27
	2.4.1	Test Run in Two Steps	2 - 27
	2.4.2	Step 1: Conducting a Test Run for Motor without Load	2 - 29
	2.4.3	Step 2: Conducting a Test Run with the Motor	
		Connected to the Machine	2 - 33
	2.4.4	Supplementary Information on Test Run	2 - 34
	2.4.5	Minimum Parameters Required and Input Signals	2 - 36

2.1 Precautions

This section provides notes on using Σ -Series products.

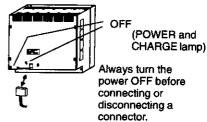


Always note the following to ensure safe use.

Use 200/400-VAC power supply

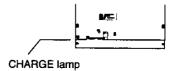
Use a 200-VAC or 400-VAC power supply according to the servomotor model.

Be sure to use the correct model. Do not plug the servomotor directly into the power frequency supply (Direct connection to the power frequency supply will damage the servomotor.)

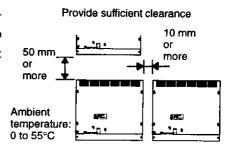


Damage will result!

Do not change wiring when power is ON.


Always turn the power OFF before connecting or disconnecting a connector.

(Except for Digital Operator (Models: JUSP-OP02A-1, JUSP-OP03A))


Note that residual voltage still remains in the SERVOPACK even after the power is turned OFF.

Even after the power is turned OFF, residual electric charge still remains in the capacitor inside the SER-VOPACK. To prevent an electric shock, always wait for the CHARGE lamp to go OFF before starting inspection (if necessary).

Always follow the specified installation method.

The SERVOPACK generates heat. Install the SER-VOPACK so that it can radiate heat freely. Note also that the SERVOPACK must be in an environment free from condensation, vibration and shock.

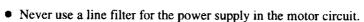
Casing

SERVOPACK

Signal∴

Servomotor

Ground (with


resistance of

100 Ω or less)

Perform noise reduction and grounding properly.

If the signal line is noisy, vibration or malfunction will result.

- Separate high-voltage cables from low-voltage cables.
- Use cables as short as possible.
- Perform the grounding with the ground resistance of 100Ω or less for the servomotor and SERVO-PACK.

Conduct a voltage resistance test under the following conditions.

• Voltage: 1500 Vrms AC, one minute

Current limit: 100 mA

• Frequency: 50/60 Hz

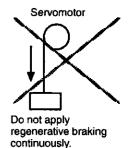
 Voltage application points: Between L1/Cr, L3C/t, L1/R, L2/S, L3/T terminals and frame ground (connect terminals securely).

Conduct a voltage resistance test under the conditions given on the left.

Use a fast-response type ground-fault interrupter.

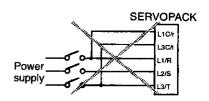
For a ground-fault interrupter, always use a fast-response type or one designed for PWM inverters. Do not use a time-delay type.

Ground-fault interrupter


GOOD GOOD POOR

Fast-response type

For PWM inverter Time-delay type


Do not perform continuous operation under overhanging load.

Continuous operation cannot be performed by rotating the motor from the load and applying regenerative braking. Regenerative braking by the SERVO-PACK can be applied only for a short period, such as the motor deceleration time.

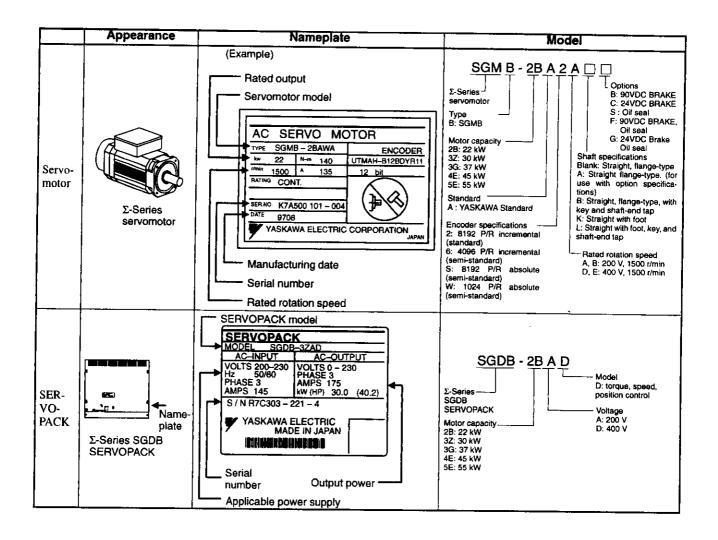
The servomotor cannot be operated by turning the power ON and OFF.

Frequently turning the power ON and OFF causes the internal circuit elements to deteriorate. Always start or stop the servomotor by using reference pulses.

Do not start or stop by turning power ON and OFF.

2.2 Installation

This section describes how to check Σ -Series products on delivery and how to install them.

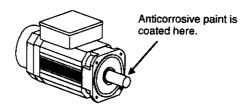

2.2.1 Checking on Delivery

When Σ -Series products are delivered, check the following items:

Check Items	Remarks
Check if the delivered products are the ones you ordered.	Check the models marked on the nameplates of servomotor and SERVOPACK (see the following table).
Check if the motor shaft rotates smoothly.	If the motor shaft is smoothly turned by hand, it is normal. However, if the motor has brakes, it cannot be turned manually.
Check for damage.	Check the overall appearance, and check for damage or scratches resulting from transportation.
Check screws for looseness.	Check for looseness by using a screwdriver as necessary.

If any of the above items are faulty or incorrect, contact the dealer from which you purchased the products or your nearest local sales representative.

2.2.1 Checking on Delivery


2.2.2 Installing the Servomotor

The SGMB servomotor can be installed either horizontally or vertically. However, if the servomotor is installed incorrectly or in an inappropriate location, the service life will be shortened or unexpected problems will occur. To prevent this, always observe the installation instructions described below.

When using the models with an oil seal, installing the motor with the output shaft up may cause oil to enter the motor depending on the operating conditions. Check the operating conditions.

Before installation:

Anticorrosive paint is coated on the edge of the motor shaft to prevent it from rusting during storage. Clean off the anticorrosive paint thoroughly using a cloth before installing the motor.

Storage:

When the servomotor is to be stored with the power cable disconnected, store it in the following temperature range:

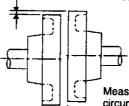
Between -20°C and 60°C

2.2.2 Installing the Servomotor

Installation sites:

The SGMB servomotor is designed for indoor use.

Install servomotor in an environment which meets the following conditions:


- 1. Free from corrosive and explosive gases
- 2. Well-ventilated and free from dust and moisture
- 3. Ambient temperature of 0 to 40°C
- 4. Relative humidity of 20% to 80% (non-condensing)
- 5. Inspection and cleaning can be performed easily
- 6. Altitude of 1000 m max.

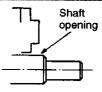
If the servomotor is used in a location subject to water or oil mist, the motor can be protected by taking necessary precautions on the motor side. However, if the **shaft opening** is to be sealed, specify the motor with oil seal. Install with the electrical connector facing downward.

Alignment:

Align the shaft of the servomotor with that of the equipment to be controlled, then connect the shafts with couplings. Install the servomotor so that alignment accuracy falls within the range shown below.

Measure this distance at four different positions in the circumference. The difference between the maximum and minimum measurements must be 0.03 mm or less. (Turn together with couplings)

Measure this distance at four different positions in the circumference. The difference between the maximum and minimum measurements must be 0.03 mm or less. (Turn together with couplings)



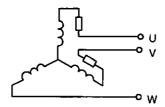
- 1. If the shafts are not aligned properly, vibration will occur, resulting in damage to the bearings.
- 2. A precision detector (encoder) is mounted on the opposite-drive end of the servomotor. To mount a coupling, always protect the shaft from impacts that could damage the detector.
- **3.** Before mounting the pinion gear directly to the motor output shaft, consult your Yaskawa sales representative.

Shaft opening

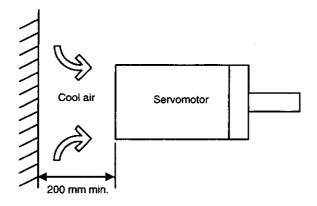
Refers to the space where the shaft comes out from the motor.

Wiring the Servomotor Power Lines

Connect the servomotor power lines (U, V, and W) to the servomotor terminal block (M10) in the servomotor terminal box. Connect the ground wire to the ground screw in the terminal box.


Wiring the Servomotor Fan

Wire the servomotor fan leads U(A), V(B), and W(C) so that the direction of air flows according to the following diagram. If the air flows in the opposite direction, change the wiring of any of the two phases U, V, and W.


Protecting the Servomotor Fan

The servomotor fan has a built-in thermal protector, as shown in the following diagram, that operates at 140° C \pm 5%. To protect the servomotor fan from overcurrent, use with a 2-A nofuse breaker.

Installing the Servomotor Fan

To maximize the cooling capacity of the servomotor fan, install the fan at least 200 mm from the inlet side of the servomotor as shown in the following diagram.

2.2.3 Allowable Thrust and Radial Shaft Loads

Servomotor Connector Specifications

• Encoder Connector on Servomotor

The connector specifications for the encoder on the servomotor are as follows:

	Encoder Co	onnectors		
Plug		Cable Clamp	Receptacle*1	
L-shaped	Straight	7	·	
JA08A-20-29S-JA-EB*2*3 or MS3108B20-29S	JA06A-20-29S-J1-EB*2*3 or MS3106B20-29S	JL04-2022CKE(**)*2*3 or MS3057-12A	97F-3102E20-29P*3	
		** indicates the cable diameter.		

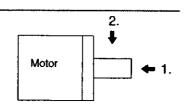
- To be prepared by the customer $\,-\,$
- * 1. Connector at servomotor is already provided.
- * 2. Manufactured by Japan Aviation Electronics Industry, Ltd.
- * 3. Waterproof.
- Fan Connector on Servomotor

The connector specifications for the fan on the servomotor are as follows:

Fan Connectors				
Plug		Cable Clamp	Receptacle*1	
L-shaped	Straight	7	•	
CE05-8A18-10SD-B-BAS*2*3 or MS3108B18-10S	CE05-6A18-10SD-B-BSS*2*3 or MS3106B18-10S	CE3057-10A-* (D265)*2*3 or MS3057-10A	CE05-2A18-10PD-B*3	
		* indicates the cable diameter.		

- * 1. Connector at the servomotor is already provided.
- * 2. Manufactured by Daiichi Denshi Kogyo Co., Ltd.
- * 3. Waterproof.

2.2.3 Allowable Thrust and Radial Shaft Loads


Design the mechanical system so that the **thrust load and radial load** applied to the servomotor shaft during operation fall within the ranges shown in the following table.

◆ Thrust load and radial load

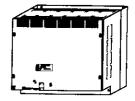
Thrust load:
 Shaft-end load applied parallel to the centerline of the shaft

Radial load:
 Shaft-end load applied perpendicular to the centerline of the shaft.

Servomotor Model	Allowable Radial Load Fr [N(lbf)]	Allowable Thrust Load Fs [N(lbf)]	LR [mm(in.)]	Reference Drawing
SGMB-2BA□□	5880 (1322)	2156 (485)	100 (3.94)	LR I
SGMB-3ZA□□	6272 (1410)	2156 (485)	100 (3.94)	
SGMB-3GA□□	7448 (1675)	2156 (485)	100 (3.94)	-
SGMB-4EA□□	7840 (1763)	2156 (485)	100 (3.94)	
SGMB-5EA□□	8428 (1895)	2156 (485)	100 (3.94)	<u>V</u> []

Note: Allowable radial and thrust loads shown above are the maximum values that could be applied to the shaft end.

2.2.4 Installing the SERVOPACK


 Σ -Series SGDB SERVOPACK is a base-mounting servo controller.

Incorrect installation will cause problems. Always observe the installation instructions described below.

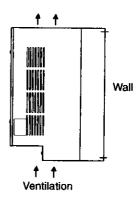
Storage:

When the SERVOPACK is to be stored with the power cable disconnected, store it in the following temperature range:

Between -20°C and 85°C

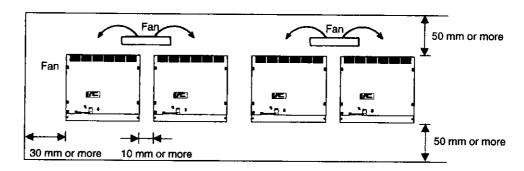
SGDB SERVOPACK

Installation sites:


Situation	Notes on Installation
When installed in a control panel	Design the control panel size, unit layout, and cooling method so that the temperature around the periphery of the SERVOPACK does not exceed 55°C.
When installed near a heating unit	Suppress radiation heat from the heating unit and a temperature rise caused by convection so that the temperature around the periphery of the SERVOPACK does not exceed 55°C.
When installed near a source of vibration	Install a vibration isolator underneath the SERVOPACK to prevent it from receiving vibration.
When installed in a place receiving corrosive gases	Corrosive gases do not immediately affect the SERVOPACK but will eventually cause contactor-related devices to malfunction. Take appropriate action to prevent corrosive gases.
Others	Avoid installation in a hot and humid place or where excessive dust or iron powder is present in the air.

Orientation:

Install the SERVOPACK perpendicular to the wall as shown in the figure.


The SERVOPACK must be orientated as shown in the figure.

Firmly secure the SERVOPACK through three or four mounting holes.

Installation method:

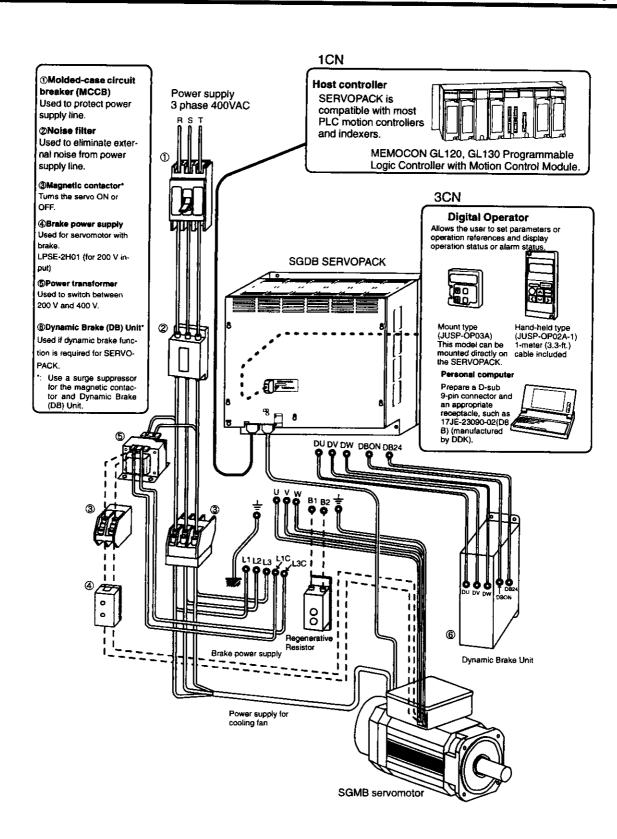
When installing multiple SERVOPACKs side by side in a control panel, observe the following installation method:

- Install SERVOPACK perpendicular to the wall so that the front panel (digital operator mounted face) faces outward.
- Provide sufficient space around each SERVOPACK to allow cooling by fan and natural convection.
- 3. When installing SERVOPACKs side by side, provide at least 10 mm space between them and at least 50 mm space above and below them as shown in the figure above. Install cooling fans above the SERVOPACKs to prevent the temperature around each SERVOPACK from increasing excessively and also to maintain the temperature inside the control panel evenly.
- 4. Maintain the following conditions inside the control panel:
 - Ambient temperature for SERVOPACK: 0 to 55°C
 - Humidity: 90%RH or less
 - Vibration: 4.9 m/s²
 - · Condensation and freezing: None
 - Ambient temperature to ensure long-term reliability: 45°C or less

2.2.5 Power Loss

Power loss of SERVOPACK is given below:

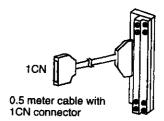
SERVOPACK Model	Output Current (RMS Value) A	Power Loss in Main Circuit W	Power Loss in Control Circuit W	Total Power Loss W
SGDB-2BAD	120	670	72	742
SGDB-3ZAD	175	980]	1052
SGDB-3GAD	210	1700	120	1820
SGDB-2BDD	60	650		770
SGDB-3ZDD	88	970		1090
SGDB-3GDD	105	1140]	1260
SGDB-4EDD	135	1440		1560
SGDB-5EDD	160	1720		1840


2.3.1 Connecting to Peripheral Devices

2.3 Connection and Wiring

This section describes how to connect Σ -Series products to peripheral devices and explains a typical example of wiring the main circuit. It also describes an example of connecting to main host controllers.

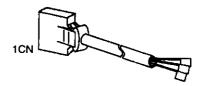
2.3.1 Connecting to Peripheral Devices


This section shows a standard example of connecting Σ -Series products to peripheral devices and briefly explains how to connect to each peripheral device.

2.3.1 Connecting to Peripheral Devices

Connector terminal block conversion unit (Model: JUSP-TA50P)

The terminal block allows connection to a host controller.



Cable with 1CN connector and one end without connector

1m (3.3ft) DE9406969-1

2m (6.6ft) DE9406969-2

3m (9.8ft) DE9406969-3

1CN connector kit (Model: DP9406970)

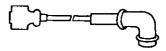
1CN

Cable for PG

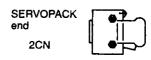
This cable is used to connect the encoder of servomotor to the SERVOPACK. The following three types of cables are available according to encoder types.

• Cable with a single connector (without connector on encoder end)

Length	Cable Model		
Lengui	Incremental	Absolute	
3m (9.8ft)	JZSP-VBP00-03	JZSP-VBP10-03	
5m (16.4ft)	JZSP-VBP00-05	JZSP-VBP10-05	
10m (32.8ft)	JZSP-VBP00-10	JZSP-VBP10-10	
15m (49.2ft)	JZSP-VBP00-15	JZSP-VBP10-15	
20m (65.6ft)	JZSP-VBP00-20	JZSP-VBP10-20	


• Cable with connectors on both ends (straight plug on encoder end)

Length	Cable Model		
Lengui	Incremental	Absolute	
3m (9.8ft)	JZSP-VBP01-03	JASP-VBP11-03	
5m (16.4ft)	JZSP-VBP01-05	JASP-VBP11-05	
10m (32.8ft)	JZSP-VBP01-10	JASP-VBP11-10	
15m (49.2ft)	JZSP-VBP01-15	JASP-VBP11-15	
20m (65.6ft)	JZSP-VBP01-20	JASP-VBP11-20	



• Cable with connectors on both ends (L-shape plug on encoder end)

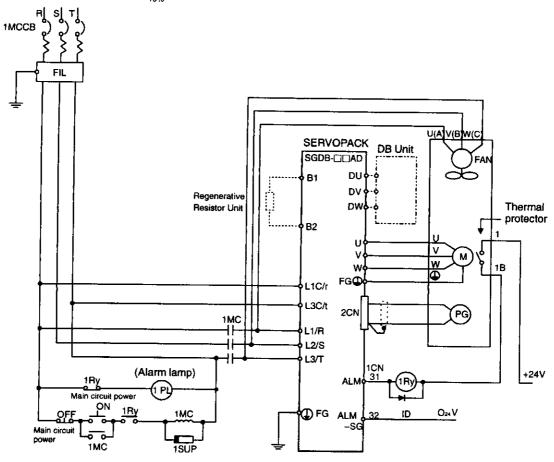
Length	Cable Model		
Lengin	Incremental	Absolute	
3m (9.8ft)	JZSP-VBP02-03	JZSP-VBP12-03	
5m (16.4ft)	JZSP-VBP02-05	JZSP-VBP12-05	
10m (32.8ft)	JZSP-VBP02-10	JZSP-VBP12-10	
15m (49.2ft)	JZSP-VBP02-15	JZSP-VBP12-15	
20m (65.6ft)	JZSP-VBP02-20	JZSP-VBP12-20	

Connector kit (DE9406973)for PG.
Connector on SERVOPACK end only

2.3.2 Main Circuit Wiring and Power ON Sequence

200-V Power Supply

The following table shows the name and description of each main circuit terminal:

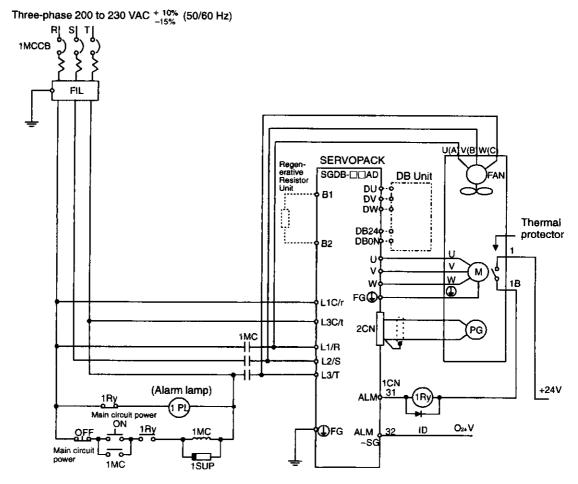

Terminal Symbol	Name	Description
L1/R, L2/S, L3/T	Main power input terminals	Three-phase 200 to 230 VAC $^{+\ 10}_{-15}\%$, 50/60Hz
U, V, W	Motor connection terminal	Used to connect motor.
L1C/r, L3C/t	Control power input terminals	Single phase 200 to 220 VAC $^{+10}_{-15}\%$, 50 Hz Single phase 200 to 230 VAC $^{+10}_{-15}\%$, 60 Hz
⊕ ×2	Ground terminal	Connected to ground. (For power ground and motor ground).
+1, +2	DC reactor connection terminal	Used for power supply harmonic suppression (factory setting: short-circuited.)
B1, B2	Regenerative Resistor Unit connection terminal	Used to connect the regenerative resistor.
_	Main circuit negative terminal	Normally, external connection is not required.
DU, DV, DW	Dynamic Brake Unit connection terminal	Used to connect the Dynamic Brake Unit.
DBON, DB24	Dynamic Brake Unit connection terminal	Used to connect the Dynamic Brake Unit to the DBON and DB24 terminals (when using 37-kW SERVOPACKs only).

The following diagrams show typical examples of wiring the main circuit for Σ -Series products:

2.3.2 Main Circuit Wiring and Power ON Sequence

• Using 200 V, 22 kW or 30 kW

Three-phase 200 to 230 VAC $^{+\ 10\%}_{-15\%}$ (50/60 Hz)



1MCCB: Circuit breaker (for inverter type) FIL: Noise filter

FIL: Noise filter
1MC: Contactor
1Ry: Relay

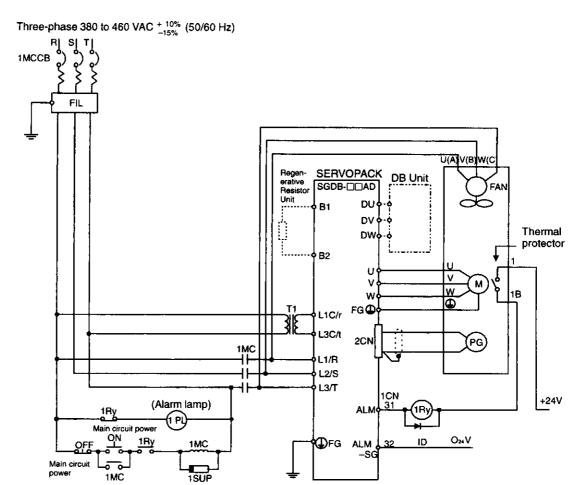
1 Ry: Relay
1 PL: Lamp for display
1 SUP: Surge suppressor
1D: Flywheel diode

• Using 200 V, 37 kW

1MCCB: Circuit breaker (for inverter type)

FIL: Noise filter 1MC: Contactor 1Ry: Relay

1PL: Lamp for display 1SUP: Surge suppressor 1D: Flywheel diode

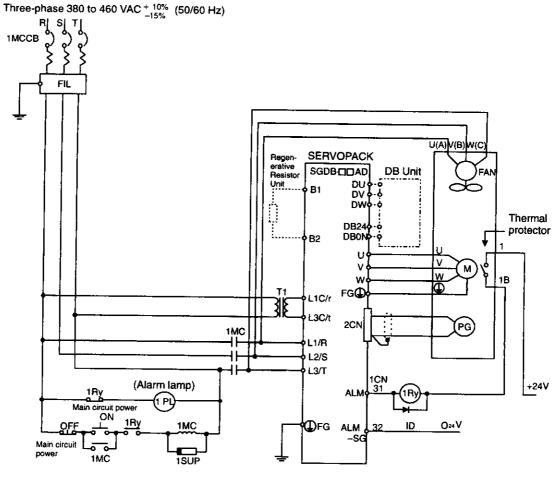

■ 400-V Power Supply

The following table shows the name and description of each main circuit terminal:

Terminal Symbol	Name	Description
L1/R, L2/S, L3/T	Main power input terminals	Three-phase 380 to 460 VAC $^{+\ 10}_{-15}\%$, 50/60Hz
U, V, W	Motor connection terminal	Used to connect motor
L1C/r, L3C/t	Control power input terminals	Single phase 200 to 220 VAC $^{+10}_{-15}\%$, 50 Hz Single phase 200 to 230 VAC $^{+10}_{-15}\%$, 60 Hz
⊕ ×2	Ground terminal	Connected to ground. (For power ground and motor ground).
+1, +2	DC reactor connection terminal	Used to protect against harmonics (factory setting: short-circuited)
B1, B2	Regenerative Resistor Unit connection terminal	Used to connect the regenerative resistor.
-	Main circuit negative terminal	Normally, external connection is not required.
DU, DV, DW	Dynamic Brake Unit connection terminal	Used to connect the Dynamic Brake Unit.
DBON, DB24	Dynamic Brake Unit connection terminal	Used to connect the Dynamic Brake Unit to the DBON and DB24 terminals (when using 37-kW and 55-kW SERVOPACKs only).

The following diagrams show typical examples of wiring the main circuit for Σ -Series products:

• Using 400 V, 22 kW or 30 kW


1MCCB: Circuit breaker (for inverter type)

FIL: Noise filter
1MC: Contactor
1Ry: Relay

T1: Power transformer (400 V/200 V)

1PL: Lamp for display 1SUP: Surge suppressor 1D: Flywheel diode

Using 400 V, 37 kW to 55 kW

1MCCB: Circuit breaker (for inverter type)

FIL: Noise filter 1MC: Contactor

1Ry: Relay

T1: Power transformer (400 V/200 V)

1PL: Lamp for display 1SUP: Surge suppressor 1D: Flywheel diode

Note

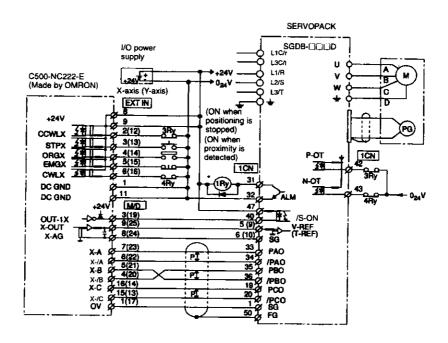
- Do not wire power lines and signal lines in the same duct or bundle them together. Wire such that signal lines are kept apart from power lines by at least 30 cm.
- Twisted pair wire and multi-core twisted pair shielding wires should be used for signal lines, encoder (PG) feedback line.

The length for wiring is 3 m maximum for the reference input line, 20 m maximum for the PG feedback line.

- Do not touch the power terminal even if power was turned OFF.
 High voltage may still remain in SERVOPACK.
 Perform inspection only after the CHARGE lamp is OFF.
- Avoid frequently turning the power ON and OFF. Since the SERVOPACK has a capacitor
 in the power supply, a high charging current flows (for 0.2 second) when the power is turned

ON. Therefore, frequently turning the power ON and OFF causes the main circuit devices (such as capacitors and fuses) to deteriorate, resulting in unexpected problems.

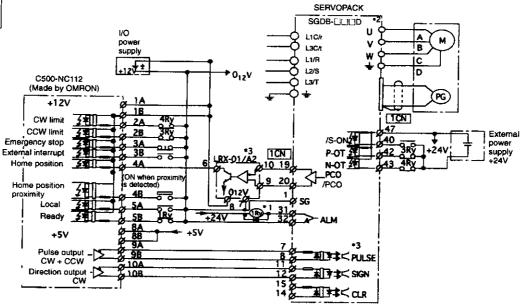
2.3.3 Examples of Connecting I/O Signal Terminals


SGDB SERVOPACKs can be connected to the host controllers listed below. Connect the SER-VOPACK to the host controller by referring to documentation for the host controller. Typical connection examples for the OMRON Position Control Unit and MITSUBISHI Positioning Unit are provided below.

- PROGIC-8
- GL-Series B2833 Positioning Module
- GL-Series B2813 Positioning Module
- OMRON C500-NC222-E and C500-NC112 Position Control Units
- MITSUBISHI AD72 and AD71 (B Type) Positioning Unit

■ Connection to OMRON C500-NC222-E Position Control Unit

SERVOPACK for Speed/Torque Control


^{*} These signals are output for approximately two seconds when the power is turned ON. Take this into consideration when designing a power ON sequence. Relay 1Ry is used to stop main circuit power supply to SERVOPACK.

Note: The signals shown here are applicable only to OMRON C500-NC222-E Position Control Unit and Yaskawa SGDB-

■ Connection to OMRON C500-NC112 Position Control Unit

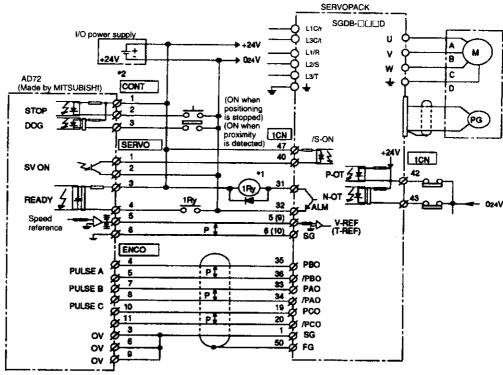
SERVOPACK for Position Control

- * 1. These signals are output for approximately two seconds when the power is turned ON. Take this into consideration when designing a power ON sequence. Relay 1 Ry is used to stop main circuit power supply to SERVOPACK.
- * 2. Change the Cn-02 setting as follows:

Bit No. 3 = 1

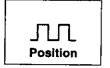
Bit No. 4 = 0

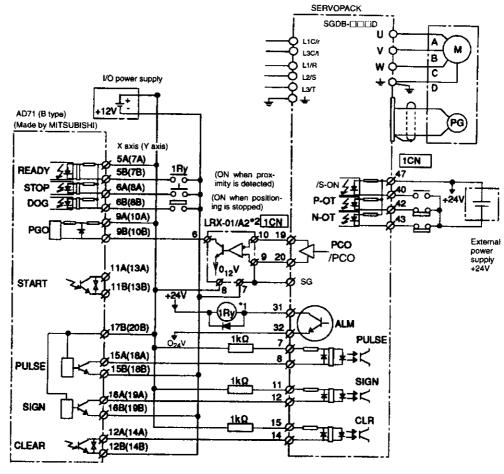
Bit No. 5 = 0


* 3. Manufactured by Yaskawa Controls Co., Ltd.

Note: The signals shown here are applicable only to OMRON C500-NC112 Position Control Unit and Yas-kawa SGDB-DDD SERVOPACK.

Connection to MITSUBISHI AD72 Positioning Unit


SERVOPACK for Speed/Torque Control


- * 1. These signals are output for approximately two seconds when the power is turned ON. Take this into consideration when designing a power ON sequence. Relay 1Ry is used to stop main circuit power supply to SERVOPACK.
- * 2. These pin numbers are the same for both X and Y axes.

Note: The signals shown here are applicable only to MITSUBISHI AD72 Positioning Unit and Yaskawa SGDB-□□□D SERVOPACK.

■ Connection to MITSUBISHI AD71 (B Type) Positioning Unit

SERVOPACK for Position Control

- * 1. These signals are output for approximately two seconds when the power is turned ON. Take this into consideration when designing a power ON sequence. Relay 1Ry is used to stop main circuit power supply to SERVOPACK.
- * 2. Manufactured by Yaskawa Controls Co., Ltd.

Note: The signals shown here are applicable only to MITSUBISHI AD71 (BType) Positioning Unit and Yaskawa SGDB-□□□D SERVOPACK.

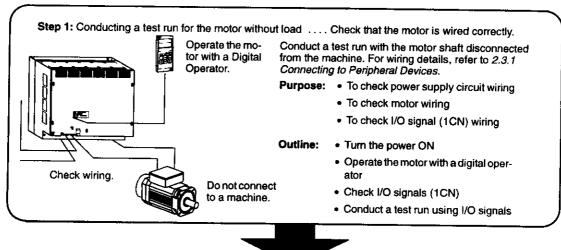
2.4 Conducting a Test Run

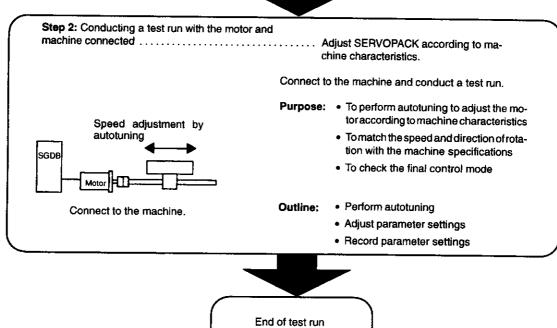
This section describes how to conduct a full test run. The test run is divided into two steps. Complete a test run in step 1 first, then proceed to step 2.

2.4.1 Test Run in Two Steps

Conduct the test run when wiring is complete.

Generally, conducting a test run for servo drives can be difficult. However, by following the two steps described below, the test run can be performed safely and correctly.


IMPORTANT


To prevent accidents, initially conduct a test run only for a servomotor under no load (i.e., with all couplings and belts disconnected). Do not run the servomotor while it is connected to a machine.

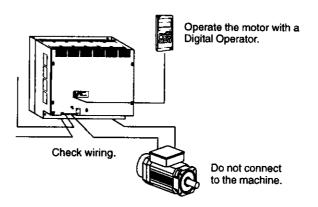
The test run is divided here into steps 1 and 2.

Complete the test run in step 1 first, then proceed to step 2. The purposes of each step are described on the next page.

2.4.1 Test Run in Two Steps

For servomotors with a brake, refer to Section 2.4.4 Supplementary Information on Test Run before starting a test run.

The following pages describe the test run procedure in detail.

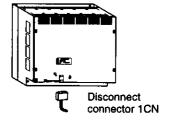

2.4.2 Step 1: Conducting a Test Run for Motor without Load

Check that the motor is wired correctly.

If the motor fails to rotate properly during a servo drive test run, the cause most frequently lies with incorrect wiring.

Conduct a test run for the motor without load according to the procedure described below.

For customers who use a servomotor with brake, refer to Section 2.4.4 Supplementary Information on Test Run before starting a test run.



- 1. Secure the servomotor.
 - Secure the servomotor to mounting holes to prevent it from moving during operation. Alternatively, install the servomotor on the machine and disconnect couplings and belts.
- Disconnect connector 1CN, then check the motor wiring in the power supply circuit.
 I/O signals (1CN) are not to be used so leave connector 1CN disconnected.
- 3. Turn the power ON.

Turn the SERVOPACK power ON. If the SER-VOPACK is turned ON normally, the LED on the Digital Operator lights up as shown in the figure. Power is not supplied to the servomotor because the servo is OFF.

If an alarm display appears on the LED as shown in the figure above, the power supply circuit, motor wiring or encoder wiring is incorrect. In this case, turn the power OFF, then correct the problem. Secure servomotor to mounting holes.

2.4.2 Step 1: Conducting a Test Run for Motor without Load

4. Operate using the Digital Operator

Operate the motor with the Digital Operator. Check that the motor runs normally.

Refer to Section 4.2.2 Operation Using the Digital Operator.

5. Connect signal lines.

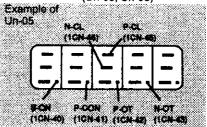
Connect connector 1CN as follows:

- a) Turn the power OFF.
- b) Connect connector 1CN.
- c) Turn the power ON again.

6. Check input signals.

Check the input signal wiring in monitor mode. For the checking method, refer to Section 4.1.7 Operation in Monitor Mode.

Operation by Digital Operator



If an alarm occurs, the power supply circuit, motor wiring, or encoder wiring is incorrect.

Internal status bit display (Un-05, Un-06)

Checking method
 Turn each connected signal line ON and OFF to check that the monitor bit display changes accordingly.

The memory switch can be used to eliminate the need for external short-circuits in wiring (see pages 3 -7 and 3 -73).

Input Signal	ON/OFF	Monitor Bit Display
High level or open	OFF	Not lit
0 V level	ON	Lit

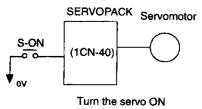
If the signal lines below are not wired correctly, the motor fails to rotate. Always wire them correctly. (If signal lines are not to be used, short them as necessary.)

A memory switch can be used to eliminate the need for external short-circuit wiring (see pages 3 -4 and 3 -64).

P-OT	1CN-42	Motor can rotate in forward direction when this input signal is at 0 V.
N-OT	1CN-43	Motor can reverse when this input signal is at 0 V.
S-ON	1CN-40	Servo is turned ON when this input signal is at 0 V. However, leave the servo in OFF status.

7. Turn servo (motor) ON.

Turn the servo ON as follows:

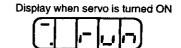

a) Check that no reference has been input.

For speed/torque control:

V-REF (1CN-5) and T-REF (1CN-9) are at 0 V.

For position control:

PULS (1CN-7) and SIGN (1CN-11) are fixed.

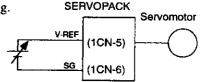


The parameter Cn-2B is used to set control modes (refer to Section 3.2 Setting Parameters According to Host Controller).

b) Turn the servo ON signal ON.

Set /S-ON (1CN-40) to 0 V. If normal, the motor starts and the Digital Operator displays the data as shown in the figure. If an alarm display appears, take appropriate action as described in *Appendix E List of Alarm Displays*.

8. Operate by reference input.


The operating procedure varies according to the setting of parameter "Control mode selection (Cn-2B)."

SERVOPACK for Speed/Torque

This section describes the standard speed control setting.

1. Gradually increase the speed reference input (V-REF, 1CN-5) voltage. The motor will rotate.

Servomotor rotates at a speed proportional to the reference voltage.

When a host controller such as a programmable controller performs position control, it may be difficult to directly input the speed reference voltage. In this case, constant voltage reference should be input once to ensure correct operation.

- 2. Check the following items in monitor mode (see page 4-14):
 - a) Has a reference speed been input?
 - **b)** Is the rotation speed the same value as the setting one?
 - c) Does the reference speed match the actual motor speed?
 - d) Does the motor stop when no reference is input?

Un-00	Actual motor speed
Un-01	Reference speed

3. If the motor rotates at an extremely slow speed when 0 V is specified as the reference voltage, correct the reference offset value as described in Section 4.2.4 Reference Offset Automatic Adjustment.

2.4.2 Step 1: Conducting a Test Run for Motor without Load

4. To change motor speed or the direction of rotation, reset the parameters shown below.

Cn-03	Speed reference gain (see page 3 -16)
Cn-02 bit 0	Reverse rotation mode (see page 3 -5)

SERVOPACK for Position Control

1. Set parameter Cn-02 so that the reference pulse form matches the host controller output form. (See page 4 -9 for details on how to set parameters.)

Host

Refer-

ence

pulse

controller

SERVOPACK

(1CN-7)

(1CN-8)

(1CN-11)

(1CN-12)

PULS

/PULS

SIGN

/SIGN

Servomotor

Selecting reference pulse form (See page 3-18)

	Bit 3
Cn-02	Bit 4
	Bit 5

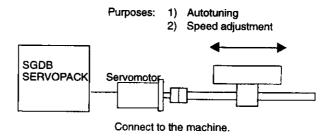
- Input slow speed pulses from the host controller and execute low-speed operation.
- 3. Check the following items in monitor mode (see page 4-14):
 - a) Has a reference pulse been input?
 - b) Is the motor speed as designed?
 - c) Does the reference speed match the actual motor speed?
 - d) Does the motor stop when no reference is input?

Un-00	Actual motor speed
Un-07	Reference pulse speed display
Un-08	Position error

4. To change motor speed or the direction of rotation, reset the parameters shown below.

Cn-24,Cn-25	Electronic gear ratio (see page 3 -30)
Cn-02 bit 0	Reverse rotation mode (see page 3 -5)

If an alarm occurs or the motor fails to rotate during the above operation, connector 1CN wiring is incorrect or the parameter settings do not match the host controller specifications. In this case, check the wiring and review the parameter settings, then repeat step 1.


Refer to Appendix D List of Parameters and Appendix E List of Alarm Displays.

This is all that is required to complete step 1 (conducting a test run for motor without load). Whenever possible, perform tuning associated with the host controller and other necessary adjustments in step 1 (before installing the motor on the machine).

2.4.3 Step 2: Conducting a Test Run with the Motor Connected to the Machine

After step 1 is complete, proceed to step 2 in which a test run is conducted with the motor connected to the machine. The purpose of step 2 is to adjust the SERVOPACK according to the machine characteristics.

Conduct a test run according to the procedure described below.

IMPORTANT

Before proceeding to step 2, repeat step 1 (conducting a test run for the motor without load) until you are fully satisfied that the test has been completed successfully. Operation faults that arise after the motor is connected to the machine not only damage the machine but may also cause an accident resulting in injury or death. Therefore, all items including parameters setting and wiring should be tested as conclusively as possible before step 1 is complete.

- Check that power is OFF.
 Turn the SERVOPACK power OFF.
- 2. Connect the servomotor to the machine.

 Refer to Section 2.2.2 Installing the Servomotor.
- 3. Perform autotuning.

Tune the SERVOPACK according to the machine characteristics. Refer to Section 4.2.3 Autotuning.

- 4. Operate by reference input.
 - As in step 1 (conducting a test run for motor without load), perform (8) Operate by reference input on page 2-31. Perform tuning associated with the host controller.
- 5. Set parameters and record the settings.

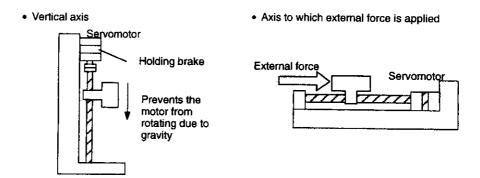
Set parameters as necessary. Record all the parameter settings for maintenance purposes.

This is all that is required to conduct the test run.

Normally, the machine may cause much friction because of an insufficient running-in period. After a test run is complete, perform adequate running-in.

2.4.4 Supplementary Information on Test Run

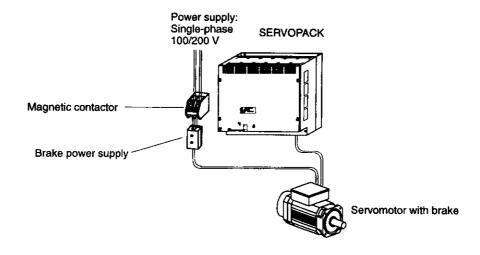
2.4.4 Supplementary Information on Test Run

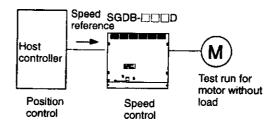

In the following cases, always refer to the information described below before starting a test run:

- When using a servomotor with a brake
- When performing position control from the host controller

When Using a Servomotor with Brake

The brake prevents the motor shaft from rotating due to a backdriving torque. Such a torque may be created by an external force or the force of gravity acting on the load and may result in undesired motion or the load, should motor power be lost.


SERVOPACK uses the brake interlock output (BK) signal to control holding brake operation for a servomotor with brake.


To prevent faulty operation caused by gravity (or external force), first check that the motor and holding brake operate normally with the motor disconnected from the machine. Then, connect the motor to the machine and conduct a test run.

For wiring of a servomotor with a brake, refer to Section 3.4.4 Using Holding Brake.

■ When Performing the Position Control from the Host Controller

Check motor operation first and then conduct a test run as described in the table below.

IMPORTANT

Check the motor operation with the motor disconnected from the machine. If the host controller does not perform position control correctly, the motor may run out of control.

Reference from Host Controller	Check Items	Check Method	Review Items	
	Motor speed	Check the motor speed as follows:	Check whether the speed reference gain value (parameter Cn-03) is correct.	
		Use the speed monitor (Un-00) of the digital operator.		
Jogging (constant-speed reference input from host controller)		• Run the motor at low speed. For example, input a speed reference of 60 r/min and check that the motor makes one revolution per one second.		
Simple positioning	Number of motor revolutions	Input a reference equivalent to one motor revolution and visually check that the motor shaft makes one revolution.	Check whether the dividing ratio count (parameter Cn-0A) is correct.	
Overtravel (when P-OT and N-OT signals are used)	Whether the motor stops rotating when P-OT and N-OT signals are input	Check that the motor stops when P-OT and N-OT signals are input during continuous motor operation.	If the motor does not stop, review the P-OT and N-OT wiring.	

2.4.5 Minimum Parameters Required and Input Signals

This section describes the minimum parameters that must be set to conduct a test run. For details on how to set each parameter, refer to Section 4.1.6 Operation in Parameter Setting Mode.

Basic parameters (common to speed, torque, position control)

Cn-11	Number of encoder pulses
Cn-01, bit E	Encoder selection
Cn-2A	Motor selection (check only in substance).
Cn-2C	PG power supply voltage change

For speed/torque control

Cn-03	Speed reference gain (see page 3-16)	
Cn-0A	Dividing ratio setting	

• For position control

Cn-02 bits 3, 4 and 5	Reference pulse form selection (see page 3-18)
Cn-24	Electronic gear ratio (numerator) (see page 3 -30)
Cn-25	Electronic gear ratio (denominator) (see page 3 -30)

When these parameters (except for Cn-03) are changed, always turn the power OFF, then back ON. This makes the new setting valid.

If the specified direction of rotation differs from the actual direction of rotation, the wiring may be incorrect. In this case, recheck the wiring and correct it accordingly. Then, if the direction of rotation is to be reversed, set the following parameter:

Cn-02 (bit 0)	Reverse rotation mode (see page 3-5)

After changing the Cn-02 setting, always turn the power OFF, then ON, to make the new setting valid.

The following table lists the minimum input signals required to conduct a test run. For details of each input signal, refer to the relevant page.

Signal Name		Pin Number	Function	
/s-on	(servo ON)	ICN-40	Switching between motor ON and OFF status. The memory switch can be used to eliminate the need for external short-circuit wiring (see page 3 -7).	
Р-ОТ	(forward rotation prohibited)	1CN-42	Overtravel limit switch	
N-OT	(reverse rotation prohibited)	ICN-43	The memory switch can be used to eliminate the need for external short-circuit wiring (see page 3 -7).	

3

APPLICATIONS OF Σ -SERIES PRODUCTS

This chapter is prepared for readers who wish to learn more about the applications of Σ -series products after fully understanding *Chapter 2 Basic Uses of \Sigma-series Products*. It explains how to set parameters for each purpose and how to use each function. Read the applicable sections according to your requirements.

3.1	Setting the Parameters According to Machin	n e
	Characteristics	3 - 5
	3.1.1 Changing the Direction of Motor Rotation	3 - 5
	3.1.2 Setting the Overtravel Limit Function	3 - 6
	3.1.3 Restricting Torque	3 - 9
3.2	Setting Parameters According to Host	
	Controller	3 - 13
	3.2.1 Inputting the Speed Reference	3 - 13
	3.2.2 Inputting the Position Reference	3 - 17
	3.2.3 Using Encoder Outputs	3 - 22
	3.2.4 Using Contact I/O Signals	3 - 26
	3.2.5 Using the Electronic Gear	3 - 28
	3.2.6 Using Torque Control	3 - 32
	3.2.7 Using the Torque Feed-forward Function	3 - 37
	3.2.8 Using Torque Restriction by Analog Voltage	
	Reference	3 - 39
	3.2.9 Using the Reference Pulse Inhibit Function	
	(INHIBIT)	3 - 40
	3.2.10 Using the Reference Pulse Input Filter Selection	
	Function	3 - 41
	3.2.11 Using the Analog Monitor	3 - 42

3.3 Setting Up the Σ SERVOPACK	3 - 44
3.3.1 Setting Parameters	3 - 44
3.3.2 Setting the Jog Speed	3 - 45
3.3.3 Setting the Number of Encoder Pulses	3 - 46
3.3.4 Setting the Motor Model	3 - 47
3.3.5 Adjusting the Encoder Supply Voltage	3 - 48
3.4 Setting the Stop Mode	3 - 49
3.4.1 Adjusting the Offset	3 - 49
3.4.2 Using the Dynamic Brake (DB)	3 - 50
3.4.3 Using the Zero-Clamp	3 - 51
3.4.4 Using the Holding Brake	3 - 52
3.5 Running the Motor Smoothly	3 - 56
3.5.1 Using the Soft Start Function	3 - 56
3.5.2 Using the Smoothing Function	3 - 57
3.5.3 Adjusting the Gain	3 - 57
3.5.4 Adjusting the Offset	3 - 58
3.5.5 Setting the Torque Reference Filter Time Constant	3 - 58
3.6 Minimizing Positioning Time	3 - 60
3.6.1 Using the Autotuning Function	3 - 60
3.6.2 Setting the Servo Gain	3 - 60
3.6.3 Using Feed-forward Control	3 - 62
3.6.4 Using Proportional Control	3 - 62
3.6.5 Setting the Speed Bias	3 - 63
3.6.6 Using the Mode Switch	3 - 63
3.7 Forming a Protective Sequence	3 - 69
3.7.1 Using the Servo Alarm Output and Alarm Code	
Output	3 - 69
3.7.2 Using the Servo ON Input Signal	3 - 72
3.7.3 Using the Positioning Complete Signal	3 - 73
3.7.4 Using the Speed Coincidence Output Signal	3 - 75
3.7.5 Using the Running Output Signal	3 - 77
3.7.6 Using the OL Warning and Alarm Output Signals	3 - 79
3.7.7 Using the Servo Ready Output Signal	3 - 80
3.7.8 Handling of Power Loss	3 - 81

3.8	Special Wiring		3 - 82	
	3.8.1	Wiring Instructions	3 - 82	
	3.8.2	Wiring for Noise Control	3 - 83	
	3.8.3	Using More Than One Servo Drive	3 - 87	
	3.8.4	Using the Regenerative Resistor Units	3 - 88	
	3.8.5	Using an Absolute Encoder	3 - 89	
	3.8.6	Connector Terminal Layouts	3 - 00	

Before Reading this Chapter

This chapter describes how to use each 1CN connector I/O signal for the SGDB SERVOPACK and how to set the corresponding parameter.

- For a list of I/O signals of 1CN connector, refer to Appendix C List of I/O Signals.
- For terminal arrangement for I/O signals of 1CN connector, refer to Section 3.8.6 Connector Terminal Layouts.
- For a list of parameters, refer to Appendix D List of Parameters.

Parameters are divided into the following two types.

Memory switch Cn-01 and Cn-02	Set each bit to ON or OFF to select a function.
Constant setting Cn-03 and later	Set a numerical value such as a torque limit value or speed loop gain.

• For details on how to set parameters, refer to Section 4.1.6 Operation in Parameter Setting Mode.

3.1 Setting the Parameters According to Machine Characteristics

This section describes how to set parameters according to the dimensions and performance of the machine to be used.

3.1.1 Changing the Direction of Motor Rotation

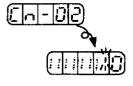
This SERVOPACK provides a reverse rotation mode in which the direction of rotation can be reversed without altering the servomotor wiring. With the standard setting, forward rotation is defined as counterclockwise (ccw) rotation viewed from the drive end.

If reverse rotation mode is used, the direction of motor rotation can be reversed without other items being changed. The direction (+/-) of axial motion is reversed.

	Standard Setting	Reverse Rotation Mode
	Encoder output from SERVOPACK	Encoder output from SERVOPACK
Forward Run Reference	PAO (Phase A) SEC: TOTOTO PBO (Phase B)	PAO (Phuse A) TOTOTO PBO (Phuse B)
Reverse Run Reference	Encoder output from SERVOPACK	Encoder output from SERVOPACK
	PAO (Phase A)	PAO (Phase A)

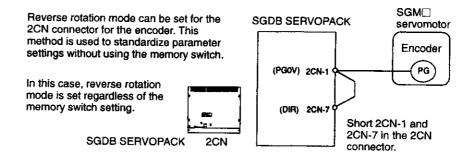
Setting the Reverse Rotation Mode

Reverse rotation mode can be set in either of the following two ways. Normally, method 1 is easier to use.


Method 1: Setting the Memory Switch

Set bit 0 of memory switch Cn-02 to select reverse rotation mode.

Cn-02 Bit 0	Rotation Direction	Factory	For Speed/Torque Control and
	Selection	Setting: 0	Position Control


Set the direction of rotation.

Setting	Meaning	
0	Forward rotation is defined as counterclockwise rotation when viewed from the drive end.	(Standard setting)
1	Forward rotation is defined as clockwise rotation when viewed from the drive end.	(Reverse rotation mode)

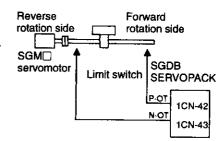
3.1.2 Setting the Overtravel Limit Function

• Method 2: Shorting the Wiring in the 2CN Connector

IMPORTANT

Be sure to short 2CN-1 and 2CN-7 in the 2CN connector. Do not wire this connection externally.

3.1.2 Setting the Overtravel Limit Function

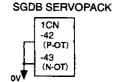

The overtravel limit function forces the moving part of the machine to stop when it exceeds the movable range.

To use the overtravel limit function, connect the following input signal terminals correctly.

→ Input P-OT 1CN-42	Forward Rotation Prohibited (Forward Overtravel)	For Speed/Torque Control and Position Control
→ Input N-OT 1CN-43	Reverse Rotation Prohibited (Reverse Overtravel)	For Speed/Torque Control and Position Control

Input terminals for overtravel limit switch.

For linear motion, connect a limit switch to prevent damage to the machine.


P-OT	ON: 1CN-42 is at low level.	Forward rotation allowed. Normal operation status.
	OFF: 1CN-42 is at high level.	Forward rotation prohibited (reverse rotation allowed).
N-OT	ON: 1CN-43 is at low level.	Reverse rotation allowed. Normal operation status.
	OFF: 1CN-43 is at high level.	Reverse rotation prohibited (forward rotation allowed).

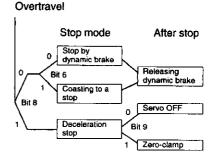
Use the following parameters (memory switch) to specify whether input signals for over-travel are to be used.

Cn-01 Bit 2	Use of P-OT Input Signal	Factory Setting: 0	For Speed/Torque Control and Position Control
Cn-01 Bit 3	Use of N-OT Input Signal	Factory Setting: 0	For Speed/Torque Control and Position Control

Specifies whether the P-OT input signal for prohibiting forward rotation at overtravel (1CN-42) is to be used and whether the N-OT input signal for prohibiting reverse rotation at overtravel (1CN-43) is to be used.

Specifies "1" when external short-circuit wiring is to be omitted.

The short-circuit wiring shown in the figure can be omitted when P-OT and N-OT are not used.


Bit	Setting	Meaning
C= 01	0	Uses the P-OT input signal for prohibiting forward rotation. (Forward rotation is allowed when 1CN-42 is at 0 V.)
Cn-01 bit 2	Door not want to DOT imput almost for word black of	
Cn-01 bit 3	0	Uses the N-OT input signal for prohibiting reverse rotation. (Reverse rotation is prohibited when 1CN-43 is open. Reverse rotation is allowed when 1CN-43 is at 0 V.)
	1	Does not use the N-OT input signal for prohibiting reverse rotation. (Reverse rotation is always allowed. This has the same effect as shorting 1CN-43 to 0 V.)

If the P-OT and N-OT input signals are used, set the following parameters to specify how to stop the motor.

Cn-01 Bit 8	How to Stop Motor at Overtravel	Factory Setting: 0	Invalid for Torque Control
Cn-01 Bit 9	Operation to be Performed when Motor Stops after Overtravel	Factory Setting: 0	Invalid for Torque Control

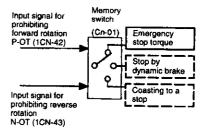
- Inputs signal for prohibiting forward rotation (P-OT, 1CN-42)
- Inputs signal for prohibiting reverse rotation (N-OT, 1CN-43)

Specify how to stop the motor when either of the above signals is input.

	Setting	Meaning				
		Stop the motor in the same way as when the servo is turned OFF.				
Stop modes is selected by	The motor is stopped by dynamic brake or coasts to a stop. Either of these stop modes is selected by setting bit 6 of Cn-01.					
bit 8	Stop the motor by decelerating it with the preset torque.					
	1	Preset value: Cn-06 (EMGTRQ) emergency stop torque				

3.1.2 Setting the Overtravel Limit Function

If deceleration stop mode is selected, specify the operation to be done after the motor stops.

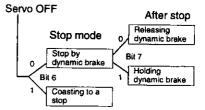

	Setting	Meaning
Cn-01	0	Turns the servo OFF when the motor stops in deceleration stop mode.
		Causes the motor to enter zero-clamp status after it stops in deceleration stop

In torque control mode, the motor stops in the same way as when the servo is turned OFF, regardless of the bit 8 setting.

Cn-06	EMGTRQ Emergency Stop Torque	Unit: %	Setting Range: 0 to Maximum Torque	Factory Setting: Maximum Torque	Valid when Cn-01 bit 8 = 1
-------	------------------------------------	------------	---	---------------------------------	----------------------------

Specifies the stop torque to be applied at overtravel when the input signal for prohibiting forward or reverse rotation is to be used.

Specifies a torque value in terms of a percentage of the rated torque.



Cn-01 Bit 6	How to Stop Motor at Servo OFF	Factory Setting: 0	
Cn-01 Bit 7	Operation to Be Performed when Motor Stops after Servo OFF	Factory Setting: 1	Invalid for 2.0 kW or more

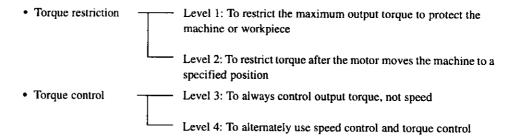
The SERVOPACK enters servo OFF status when:

- Servo ON input signal (/S-ON, 1CN-40) is turned OFF.
- · Servo alarm arises.
- · Power is turned OFF.

Specify how to stop the motor when one of the above events occurs during operation.

Dynamic brake is a function that electrically applies brakes by using a resistor to consume motor rotation energy.

	Setting	Meaning			
	0	Stops the motor by dynamic brake.			
Cn-01 bit 6	1	Causes the motor to coast to a stop.			
UN O	' '	The motor power is OFF and stops due to machine friction.			


If dynamic brake stop mode is selected, specify the operation to be performed when the motor stops.

	Setting	Meaning
Cn-01	0	Releases dynamic brake after the motor stops.
bit 7	1	Does not release dynamic brake even after the motor stops.

Note: For SERVOPACKs of 2.0 kW or more, bit 7 of Cn-01 can be set to 0 only.

3.1.3 Restricting Torque

The SERVOPACK can provide the following torque control:

This section describes how to use levels 1 and 2 of the torque restriction function.

■ How to Set Level 1: Internal Torque Limit

The maximum torque is restricted to the values set in the following parameters.

Cn-08	TLMTF Forward Rotation Torque Limit	Unit:	Setting Range: 0 to 800	Factory Setting: 800	For Speed/Torque Control and Position Control
Cn-09	TLMTR Reverse Rotation Torque Limit	Unit: %	Setting Range: 0 to 800	Factory Setting: 800	For Speed/Torque Control and Position Control

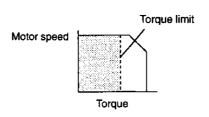
Sets the maximum torque values for forward rotation and reverse rotation, respectively.

Sets these parameters when torque must be restricted according to machine conditions.

This torque restriction function always monitors torque, and outputs the signal shown on the right when the limit value is reached.

Specifies a torque limit value in terms of a percentage of the rated torque.

If a value higher than the maximum torque is set, the maximum torque value is used.

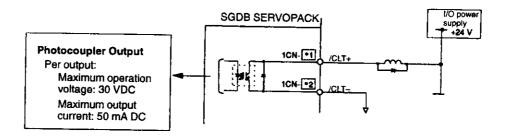

Output Signal for Torque Restriction Function

- /CLT
- Monitor mode (Un-06) bit 4

Parameter Setting:

 $(Cn-2D) = \square \square 3, \square 3 \square, 3 \square \square$

Example of Use: Machine Protection



Note that too small a torque limit value will result in torque shortage at acceleration or deceleration.

3.1.3 Restricting Torque

• Using the /CLT Signal

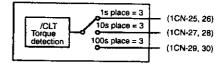
This section describes how to use contact output signal /CLT as a torque limit output signal.

Output /CLT 1CN-*1	Torque Limit Output	For Speed/Torque Control and Position
		Control

This signal indicates whether motor output torque (current) is being restricted.

ON status: The circuit between 1CN-*1 and 1CN-*2 is closed. 1CN-*1 is at low level.	Motor output torque is being restricted. (Internal torque reference is greater than the preset value.)
OFF status: The circuit between 1CN-*1 and 1CN-*2 is open. 1CN-*1 is at high level.	Motor output torque is not being restricted. (Internal torque reference is equal to or below the preset value.)

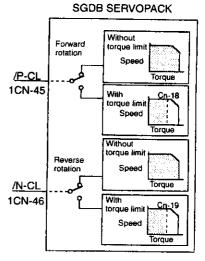
Preset Value: Cn-08 (TLMTF)


Cn-09 (TLMTR)

Cn-18 (CLMIF): P-CL input only Cn-19 (CLMIR): N-CL input only

Cn-2D	Output Signal Selection	For Speed/Torque Control and Position Control
		 · · · · · · · · · · · · · · · · · · ·

Specifies the terminal to which /CLT is to be output.


Setting	Output tern	ninals (1CN-)
	*1	*2
1s place = 3	25	26
10s place = 3	27	28
100s place = 3	29	30

How to Set Level 2: External Torque Limit

First, use a contact input signal to make the torque (current) limit value set in the parameter valid. Torque limit can be set separately for forward and reverse rotation.

To use this function, always set bit 2 of memory switch Cn-02 to 0 (standard setting). The contact input speed control function cannot be used.

P-CL	ON: 1CN-45 is at low level.	Torque restriction applies during forward rotation.	Limit value: Cn-18
OFF: 1CN-45 is at		Torque restriction does not apply during forward rotation.	
N-CL	ON: 1CN-46 is at low level.	Torque restriction applies during reverse rotation.	Limit value: Cn-19
N-CL	OFF: 1CN-46 is at high level.	Torque restriction does not apply during reverse rotation.	

This torque restriction function outputs the signal shown on the right.

Output Signal for Torque Restriction Function

- · /CLT
- · Status indication mode bit data
- Monitor mode Un-05 bit 4

Parameter Setting:

 $Cn-2D = \square \square 3, \square 3 \square, 3 \square \square$

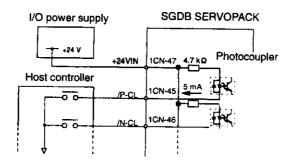
Examples of Use:

- · Forced stopping
- · Holding workpiece by robot

Cn-18	CLMIF Forward External Torque Limit	Unit: %	Setting Range: 0 to 800	Factory Setting: 100	For Speed/Torque Control and Position Control
Cn-19	CLMIR Reverse External Torque Limit	Unit: %	Setting Range: 0 to 800	Factory Setting: 100	For Speed/Torque Control and Position Control

Sets a torque limit value when torque is restricted by external contact input.

This function is valid when Cn-2B is set to 0, 1, 2, 7, 8, 9, 10, 11.


When /P-CL (1CN-45) is input	Applies torque restriction as specified in Cn-18
When /N-CL (1CN-46) is input	Applies torque restriction as specified in Cn-19

For torque restriction by analog voltage reference, refer to Section 3.2.8 Using Torque Restriction by Analog Voltage Reference.

3.1.3 Restricting Torque

• Using the /P-CL and /N-CL Signals

This section describes how to use input signals /P-CL and /N-CL as torque limit input signals.

⇒ Input /P-CL 1CN-45	Forward External Torque Limit Input	For Speed/Torque Control and Position Control
Input /N-CL 1CN-46	Reverse External Torque Limit Input	For Speed/Torque Control and Position Control

These signals are for forward and reverse external torque (current) limit input.

This function is useful in forced stopping.

Output Signal for Torque Restriction Function

- /CLT
- Status indication mode bit data
- Monitor mode Un-06 bit 4
- Parameter Setting:
- $Cn-2D = \square \square 3, \square 3\square, 3\square\square$

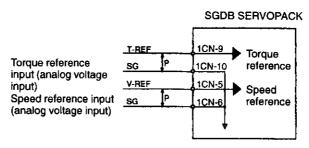
P-CL	ON: 1CN-45 is at low level.	Torque restriction applies during forward rotation.	Limit value: Cn-18
OFF: 1CN-45 is at Tor		Torque restriction does not apply during forward rotation. Normal operation status.	
N-CL	ON: 1CN-46 is at low level.	Torque restriction applies during reverse rotation.	Limit value: Cn-19
N-CL	OFF: 1CN-46 is at high level.	Torque restriction does not apply during reverse rotation. Normal operation status.	

The signal shown on the above are output while torque is being restricted.

This function is changed to another function depending on the setting of bit 2 of memory switch Cn-2B (see below).

To use /P-CL and /N-CL as torque limit input signals, set the following constant.

1 Scung, V Fosition Control	Cn-2B	Control Mode Selection	Factory Setting: 0	For Speed/Torque Control and Position Control
-------------------------------	-------	------------------------	-----------------------	--

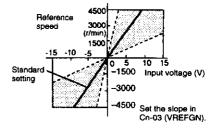

<u>პ</u>

3.2 Setting Parameters According to Host Controller

This section describes how to connect a Σ -series Servo to a host controller and how to set parameters.

3.2.1 Inputting the Speed Reference

Input a speed reference by using the following input signal "speed reference input." Since this signal can be used in different ways, set the optimum reference input for the system to be created.


‡P: Represents twisted-pair cables

-→ Input V-REF	1CN-5	Speed Reference Input	For Speed Control Only
Input SG	1CN-6	Signal Ground for Speed Reference Input	For Speed Control Only

Use these signals when speed control (analog reference) mode is selected (Cn-2B is set to 0, 4, 7, 9, or 10).

For ordinary speed control, always wire the V-REF and SG terminals.

Motor speed is controlled in proportion to the input voltage between V-REF and SG.

Standard Example:

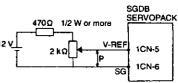
Cn-03 = 500: This setting means that 6 V is 3000 r/min

Examples:

- +6 V input → 3000 r/min in forward direction
- +1 V input \rightarrow 500 r/min in forward direction
- -3 V input → 1500 r/min in reverse direction

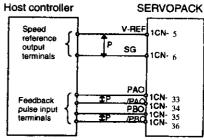
Parameter Cn-03 can be used to change the voltage input range.

• Example of Input Circuit


(See the figure on the right)

For noise control, always use twisted-pair cables.

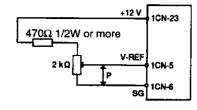
Recommended Variable Resistor for Speed


Setting:

Model 25HP-10B manufactured by Sakae Tsushin Kogyo Co., Ltd.

3.2.1 Inputting the Speed Reference

When position control is performed by a host controller such as a programmable controller, connect V-REF and SG-V to speed reference output terminals on the host controller. In this case, adjust Cn-03 according to output voltage specifications.


‡P: Represents twisted-pair cables

The internal ± 12 V power supply can be used.

+12V	1CN-23
-12V	1CN-24

Maximum output current: 30 mA

Voltage: 12 V±2 V

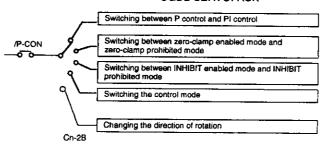
Set constant Cn-2B to select one of the following control modes.

Cn-2B	Control Mode Selection	Factory Setting: 0	For Speed/Torque Control and Position Control

Cn-2B Setting		Control Metho	od
0	• /P-CON (1C		1 1
7, 9	This control mo position/torque • Speed reference • /P-CON (1C)	ue Control ↔ Speed Control de can be switched between control and speed control. nce is input from V-REF (1CN-5). N-41) is used to switch the control en position/torque control and l. Position/Torque control Speed control	SGDB SERVOPACK Speed reference V-REF 1CN-5 Control method changeover /P-CON
10	function to be sSpeed referer/P-CON (1C)	rol allows the zero-clamp et when the motor stops. uce is input from V-REF (1CN-5). N-41) signal is used to turn the unction ON or OFF. Turns zero-clamp function OFF Turns zero-clamp function ON	Speed reference V-REF 1CN-5 Zero-clamp /P-CON 1CN-41 Zero-clamp is performed when the following two conditions are met: Condition 1: /P-CON is turned ON. Condition 2: Motor speed drops below the preset value. Preset value: Cn-0F (ZCLVL)

◆ Zero-clamp function

This function is used for a system in which the host controller does not form a position loop. In this case, the stopping position may shift even if a speed reference is set to 0. If the zero-clamp function is turned ON, a position loop is internally formed so that the stopping position is firmly "clamped."

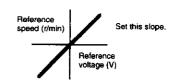

3.2.1 Inputting the Speed Reference

• Using the /P-CON Signal:

→ Input /P-CON 1CN-41 Proportional Control, etc. For Speed Control and Position Control

The function of input signal /P-CON changes with Cn-2B setting.

SGDB SERVOPACK



Cn-2B Setting	Meaning of /P-CON Signal		
0, 1	Switching between proportional (P) control and proportional/integral (Pl) control		
2	Not used		
7, 8, 9	Switching the control mode		
10	Switching between zero-clamp enabled and zero-clamp prohibited modes		
11	Switching between INHIBIT enabled and INHIBIT prohibited modes		

Adjust the speed reference gain using the following parameter.

Cn-03	VREFGN Speed Reference Gain	Unit: (r/min)/V	Setting Range: 10 to 2000		For Speed Control Only
-------	--------------------------------	--------------------	---------------------------------	--	---------------------------

Sets the voltage range for speed reference input V-REF (1CN-5). Sets this parameter according to the output form of the host controller or external circuit.

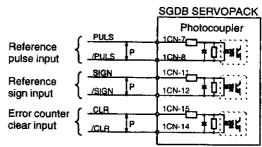
The factory setting is as follows: Rated speed $\pm 1\%/6$ V

Motor Series	Factory Setting
SGMB (1500 r/min)	250

3.2.2 Inputting the Position Reference

Input a position reference by using the following input signal "reference pulse input." Since there are several specifications for input signal, select reference input for the system to be created.

To use position control, set the following constant.

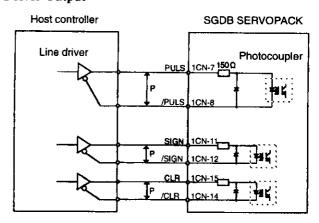

Cn-2B	Control Mode Selection		For Speed / Torque Control and Position Control
-------	---------------------------	--	--

Pulse Input Reference

Inputs a move reference by pulse input.

Position reference can correspond to the following three types of output form:

- Line driver output
- +12V Open collector output
- +5V Open collector output

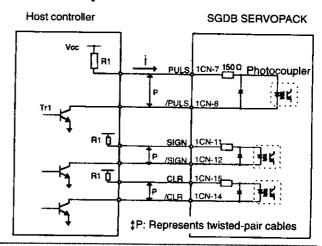


‡P: Represents twisted-pair cables

Connection Example 1: Line Driver Output

Line Driver Used:

SN75174 manufactured by Texas Instruments Inc., or MC3487 or equivalent.

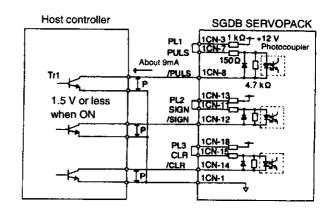

3.2.2 Inputting the Position Reference

Connection Example 2: Open Collector Output

Sets the value of limiting resistor R1 so that input current i falls within the following range:

Input Current i: 7 to 15 mA Examples:

- When Vcc is 12 V,
 R1 = 1 kΩ
- When Vcc is 5 V,
 R1 = 180 Ω



The signal logic for open collector output is as follows.

When Trl is ON	Equivalent to high level input
When Trl is OFF	Equivalent to low level input

The power supply inside the SERVOPACK can be used.

If this power supply is used, it will not be isolated from 0 V in the SERVOPACK.

Selecting the Reference Pulse Form

Use the following memory switch to select the reference pulse form to be used:

\rightarrow Input PULS	1CN-7	Reference Pulse Input	For Position Control Only
→ Input /PULS	1CN-8	Reference Pulse Input	For Position Control Only
\rightarrow Input SIGN	1CN-11	Reference Sign Input	For Position Control Only
→ Input /SIGN	1CN-12	Reference Sign Input	For Position Control Only

The motor only rotates at an angle proportional to the input pulse.

Cn-02 Bit 3	Reference Pulse Form Selection	Factory Setting: 0	For Position Control Only
Cn-02 Bit 4	Reference Pulse Form Selection	Factory Setting: 0	For Position Control Only
Cn-02 Bit 5	Reference Pulse Form Selection	Factory Setting: 0	For Position Control Only

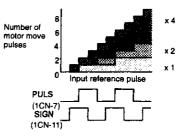
3

Sets the form of a reference pulse that is externally output to the SERVOPACK.

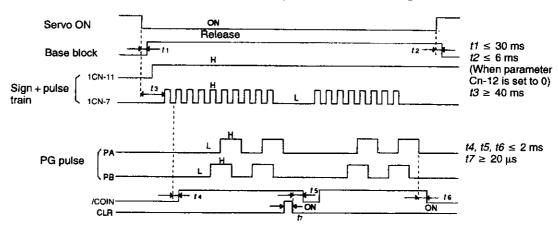
Sets the pulse form according to the host controller specifications.

Host controller Position SGDB reference pulse (1CN-7) SIGN

Set also the input pulse logic in bit D of Cn-02.


	Cn-02	2		Input	Refer- ence	Motor Forward Run Ref-	Motor Reverse Run Ref-	
Bit D	Bit 5	Bit 4	Bit 3	Pulse Multiplier	Pulse Form	erence	erence	
	0	0	0		Sign + pulse train	PULS	PULS	
0	0	1	0	×1	Two- phase pulse	 		
(Positive logic setting)	0	1	1	×2	train with PULS 90° (1CN-7) SIGN 1		PULS	
ung)	1	0	0	×4	differ- ence	(1CN-11)	(1CN-11)	
	0	0	ĵ		CW pulse + CCW pulse	PULS	PULS	
	0	0	0		Sign + pulse train	PULS (1CN-7) SIGN 1-L* (1CN-11)	PULS (1CN-7) SIGN "H"	
1	0	1	0	×1	Two- phase pulse	₁୮ 80,	90°	
(Nega- tive logic setting)	0	1	1	×2	train with 90° phase differ- ence	train with 90°	PULS (1CN-7) SIGN (1CN-11)	PULS (1CN-7) SIGN
Jonney,	1	0	0	×4		(1CN-11)	(1CN-11)	
	0	0	1		CW pulse + CCW pulse	PULS H- (1CN-7) SIGN (1CN-11)	PULS (1CN-7) SIGN H	

3.2.2 Inputting the Position Reference


Input Pulse Multiply Function:

When the reference form is two-phase pulse train with 90° phase difference, the input pulse multiply function can be used.

The electronic gear function can also be used to convert input pulses.

Example of I/O Signal Generation Timing

Note: The interval from the time the servo ON signal is turned ON until a reference pulse is input must be at least 40 ms. Otherwise, the reference pulse may not be input.

The error counter clear (CLR) signal must be ON for at least 20 µs. Otherwise, it becomes invalid.

Reference Pulse **Electrical Specifications** Remarks **Form** Sign + pulse train input The signs for each (SIGN + PULS signal) reference pulse are as follows: Maximum reference ⊕: High level frequency: 450 kpps ⊕: Low level ⊖ reterence ة بر 1.1 ≦ ع t1, t2 ≤ 0.1 µs $t3, t7 \le 0.1 \,\mu s$ 14. 15. 16 > 3 µs 90° different two-phase Phase A Parameter Cn-02 (bits 3, Phase B pulse train 4 and 5) is used to (phase A + phase B) switch the input pulse multiplier mode. Maximum reference frequency x 1 multiplier: Θ 450 kpps Phase B is 905 Phase B is 905 x 2 multiplier: forward from phase B 400 kpps f 1. | 12 ≤ 0.5 μs x 4 multiplier: $\frac{r}{r} \times 100 \leq 50\%$ 200 kpps CCW pulse CCW pulse + CW pulse CW pulse Maximum reference frequency: 450 kpps SIGN ⊕ reference → reference

Allowable Voltage Level and Timing for Reference Pulse Input

Clearing the Error Counter

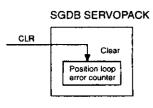
The following describes how to clear the error counter.

→ Input CLR 1CN-15	Error Counter Clear Input	For Position Control Only
→ Input /CLR 1CN-14	Error Counter Clear Input	For Position Control Only

t1. t2 ≤ 0.1 μs

13 > 3 us

 $r \ge 1.1 \mu_0$ $\frac{r}{T} \times 100 \le 50\%$


Setting the CLR signal to high level does the following:

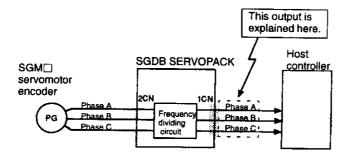
• Sets the error counter inside the SERVOPACK to 0.

• Prohibits position loop control.

Use this signal to clear the error counter from the host controller.

Bit A of memory switch Cn-02 can be set so that the error counter is cleared only once when the leading edge of an input pulse rises.

3.2.3 Using Encoder Outputs

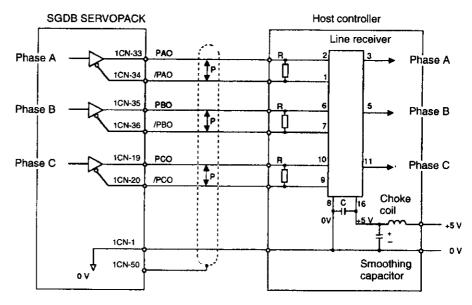

Cn-02 Rit A Error Counter Clear Signal Factory For Position Control Or			 	
Selection Setting: 0	nly	For Position Control Only		Cn-02 Bit A

Selects the pulse form of error counter clear signal CLR (1CN-15).

Setting	Meaning	
0	Clears the error counter when the CLR signal is set at high level. Error pulses do not accumulate while the signal remains at high level.	CLR "H" Cleared state
1	Clears the error counter only once when the rising edge of the CLR signal rises.	CLR *H* 1CN-15

3.2.3 Using Encoder Outputs

Encoder output signals **divided** inside the SERVOPACK can be output externally. These signals can be used to form a position control loop in the host controller.



Divided (or dividing)

"Dividing" means converting an input pulse train from the encoder mounted on the motor according to the preset pulse density and outputting the converted pulse. The unit is pulses per revolution.

The output circuit is for line driver output. Connect each signal line according to the following circuit diagram.

‡P: Represents twisted-pair cables

Line receiver used: SN75175 manufactured by Texas Instruments Inc. or MC3486 (or equivalent)

R (termination resistor):

220 to 470 Ω

C (decoupling capacitor):

0.1 μF

■ i/O Signals

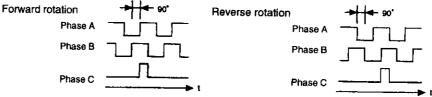
I/O signals are described below.

Output →	PAO 1CN-33	Encoder Output Phase-A	For Speed/Torque Control and Position Control
Output	/PAO 1CN-34	Encoder Output Phase-/A	For Speed/Torque Control and Position Control
Output	PBO 1CN-35	Encoder Output Phase-B	For Speed/Torque Control and Position Control
Output	/PBO 1CN-36	Encoder Output Phase-/B	For Speed/Torque Control and Position Control
Output	PCO 1CN-19	Encoder Output Phase-C	For Speed/Torque Control and Position Control
Output \rightarrow	/PCO 1CN-20	Encoder Output Phase-/C	For Speed/Torque Control and Position Control

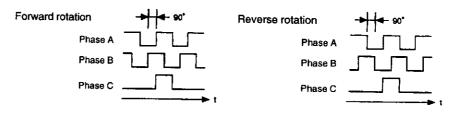
Divided encoder signals are output.

Always connect these signal terminals when a position loop is formed in the host controller to perform position control.

Set a dividing ratio in the following parameter.


Dividing ratio setting	Cn-0A PGRAT

The dividing ratio setting is not relevant to the gear ratio setting (Cn-24, 25) for the electronic gear function of the SERVOPACK when used for position control.


3.2.3 Using Encoder Outputs

Output Phase Form

Incremental Encoder

Absolute Encoder

→ Input SEN 1CN-4	SEN Signal Input	For Speed/Torque Control Only
→ Input SG 1CN-2	Signal Ground	For Speed/Torque Control Only
Output PSO 1CN-48	Encoder Output Phase-S	For Speed/Torque Control and Position Control
Output · /PSO 1CN-49	Encoder Output Phase-/S	For Speed/Torque Control and Position Control
→ Input BAT 1CN-21	Battery (+)	For Speed/Torque Control and Position Control
→ Input BAT0 1CN-22	Battery (-)	For Speed/Torque Control and Position Control

Use these signals (SEN to BAT0) for absolute encoders. For details, refer to Section 3.8.5 Using an Absolute Encoder.

Output SG 1CN-1	Signal Ground	For Speed/Torque Control and Position Control
Output FG 1CN-50	Frame Ground	For Speed/Torque Control and Position Control

SG: Connect to 0 V on the host controller.

FG: Connect to the cable shielded wire.

Setting the Type of Encoder

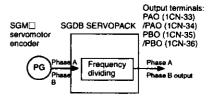
Use the following memory switch to specify the type of the encoder to be used.

Cn-01 Bit E Encoder Type Selection Factory Setting: 0 For Speed/To Position Con

Sets the encoder type according to the servomotor type as shown in the table.

After changing the memory switch setting, always turn the power OFF, then ON.

Motor Type encoder specifications	Number of Encoder Pulses Per Revolution (P/R)			
2	Incremental encoder: 8192 pulses per revolution			
6	Incremental encoder: 4096 pulses per revolution	0		
W	Absolute encoder: 1024 pulses per revolution			
S	Absolute encoder: 8192 pulses per revolution			


Setting the Pulse Dividing Ratio

Set the pulse dividing ratio in the following parameter.

	PGRAT	Unit:	Setting	For Speed/Torque
Cn-0A	Dividing Ratio Setting	P/R	Range: 16 to	Control and Position
			32768	Control

Sets the number of output pulses for PG output signals (PAO, /PAO, PBO and /PBO).

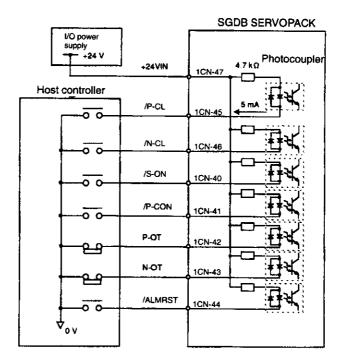
Pulses from motor encoder (PG) are divided by the preset number of pulses before being output.

The number of output pulses per revolution is set in this parameter. Set this value according to the reference unit of the machine or controller to be used.

The setting range varies according to the encoder used.

Motor Type Encoder Specifications	Encoder	
2	Incremental encoder: 8192 pulses per revolution	16 to 8192
3	Incremental encoder: 2048 pulses per revolution	16 to 2048
6	Incremental encoder: 4096 pulses per revolution	16 to 4096
W	Absolute encoder: 1024 pulses per revolution	16 to 1024
S	Absolute encoder: 8192 pulses per revolution	16 to 8192

3.2.4 Using Contact I/O Signals


rAfter changing the parameter setting, always turn the power OFF, then ON.

3.2.4 Using Contact I/O Signals

These signals are used to control SGDB SERVOPACK operation. Connect these signal terminals as necessary.

Contact Input Signal Terminal Connections

Connect the contact input signals as follows:

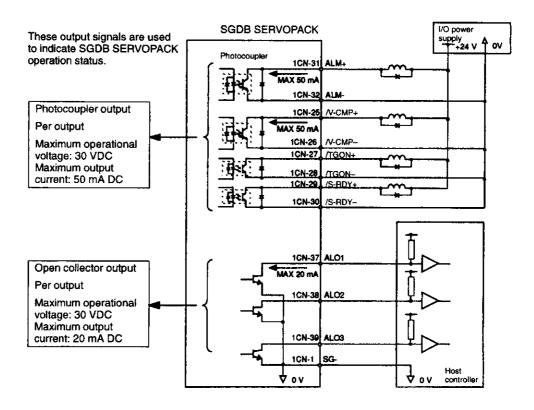
IMPORTANT

Provide an external I/O power supply separately.

There are no power terminals available from the SGDB SERVOPACK outputs signals externally.

External Power Supply: 24 ± 1 VDC

50 mA or more


Yaskawa recommends that this external power supply be the same type as for the output circuit.

→ Input +24VIN	1CN-47	24 V I/O Power Supply	For Speed/Torque Control and Position Control

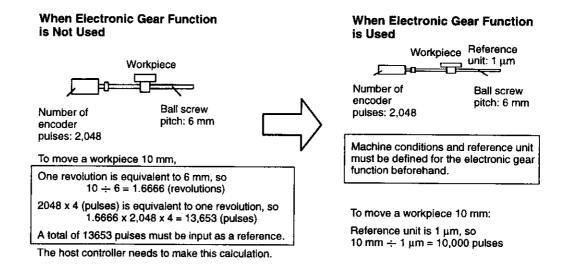
SGDB SERVOPACK This external power supply input terminal is I/O power common to the following contact input signals: supply +24 V Contact Input Signals: /P-CL (1CN-45)**24VIN** 1CN-47 /N-CL (1CN-46)/S-ON (1CN-40)Connect an external I/O power supply. /P-CON (1CN-41)P-OT (1CN-42)N-OT (1CN-43)

/ALMRST (1CN-44)

Contact Output Signal Terminal Connections

IMPORTANT

Provide an external I/O power supply separately.

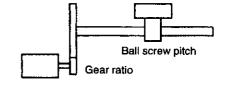

There are no power terminals to which the SGDB SERVOPACK outputs signals externally.

Yaskawa recommends that this external power supply be the same type as for the input circuit.

3.2.5 Using the Electronic Gear

3.2.5 Using the Electronic Gear

The electronic gear function enables the motor travel distance per input reference pulse to be set to any value. It allows the host controller to perform control without having to consider the machine gear ratio and the number of encoder pulses.


Setting the Electronic Gear

Calculate the electronic gear ratio (B/A) according to the procedure below and set the value in Cn-24 and Cn-25.

1. Check the machine specifications.

Items related to electronic gear:

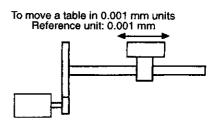
- Gear ratio
- Ball screw pitch
- Pulley diameter

2. Check the number of encoder pulses for the SGM \square servomotor.

Motor Type Encoder Specifications	Encoder Type	Number of Encoder Pulses Per Revolution (P/R)*
2	Incremental encoder	8192
6		4096
W	Absolute encoder	1024
S	<u></u>	8192

^{*} Same as parameter Cn-11 settings.

3. Determine the reference unit to be used.


Reference unit is the minimum unit of position data used for moving the load.

(Minimum unit of reference from host controller)

Examples:

0.01 mm, 0.001 mm, 0.1°, 0.01 inch

Reference input of one pulse moves the load by one reference unit.

Determine the reference unit according to machine specifications and positioning accuracy.

Example: When reference unit is 1 µm

If a reference of 50,000 pulses is input, the load moves 50 mm (50,000 x 1 μ m).

4. Determine the load travel distance per revolution of load shaft in reference units.

Load travel distance per revolution of load shaft (in reference units)

= Load travel distance per revolution of load shaft (in unit of distance)

Reference unit

Example: When ball screw pitch is 5 mm and reference unit is 0.001 mm5/0.001 = 5,000 (reference units)

Ball Screw	Disc Table	Belt & Pulley
Load shaft P: Pitch 1 revolution Reference unit	Load shaft 1 revolution 360° Reference unit	Load shaft D: Pulley diameter 1 revolution Reference unit

5. Determine the electronic gear ratio $\left(\frac{B}{A}\right)$.

If the load shaft makes "n" revolutions when the motor shaft makes "m" revolutions, the gear ratio of motor shaft and load shaft is $\frac{n}{m}$

Electronic gear ratio
$$\left(\frac{B}{A}\right) =$$

Number of encoder pulses x 4 $\times \frac{m}{n}$

IMPORTANT

Make sure that the electronic gear ratio meets the following condition:

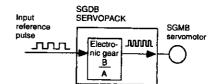
$$0.01 \le \text{Electronic gear ratio}\left(\frac{B}{A}\right) \le 100$$

If the electronic gear ratio is outside this range, the SERVOPACK does not work properly. In this case, modify the load configuration or reference unit.

3.2.5 Using the Electronic Gear

6. Set the electronic gear ratio in the parameters below.

Reduce the electronic gear ratio $\left(\frac{B}{A}\right)$ to their lowest terms so that both A and B are an integer smaller than 65535, then set A and B in the following parameters.


$$\left(\frac{B}{A}\right)$$
 Cn-24 RATB Electronic gear ratio (numerator)
Cn-25 RATA Electronic gear ratio (denominator)

This is all that is required to set the electronic gear.

Cn-24	RATB Electronic Gear Ratio (Numerator)	Unit: None	Setting Range: 1 to 65535	Factory Setting: 4	For Position Control Only
Cn-25	RATA Electronic Gear Ratio (Denominator)	Unit: None	Setting Range: 1 to 65535	Factory Setting: 1	For Position Control Only

Set the electronic gear ratio according to machine specifications.

Electronic gear ratio $\left(\frac{B}{A}\right) = \frac{\text{Cn-24}}{\text{Cn-25}}$

B = [(Number of encoder pulses) x 4] x [Motor shaft rotating speed]

A = [Reference unit (load travel distance per revolution of load shaft)] x [Load shaft rotating speed]

Note that the parameter settings must meet the following condition:

$$0.01 \le \left(\frac{B}{A}\right) \le 100$$

3

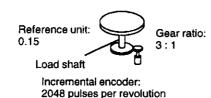
Examples of Setting an Electronic Gear Ratio for Different Load Mechanisms

Ball Screw

Reference unit: 0.001 mm

Travel distance per revolution of load shaft $=\frac{6mm}{0.001mm} = 6000$

Load shaft


2048 pulses per revolution

Electronic gear ratio $\left(\frac{B}{A}\right) = \frac{2048 \times 4 \times 1}{6000 \times 1} = \frac{Cn-24}{Cn-25}$

Incremental encoder:

Ball screw pitch: 6 mm Preset values Cn-24 8192 Cn-25 6000

Disc Table

Travel distance per revolution of load shaft = $\frac{360^{\circ}}{0.1^{\circ}}$ = 3600

Electronic gear ratio $\left(\frac{B}{A}\right) = \frac{2048 \times 4 \times 3}{3600 \times 1} = \frac{Cn-24}{Cn-25}$

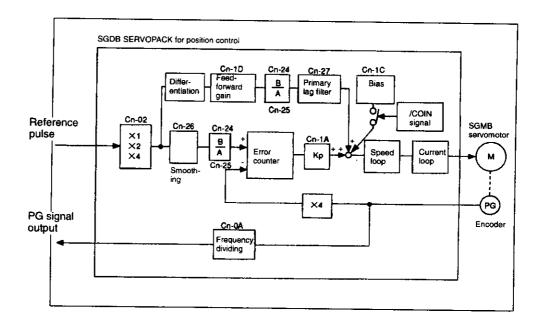
Preset values Cn-24 24576 Cn-25 3600

Belt & Pulley

Reference unit: 0.0254 mm Load shaft

Gear ratio: Pulley diameter: 100 mm

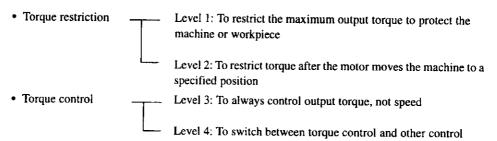
Absolute encoder: 1024 pulses per revolution


Travel distance per revolution of load shaft $=\frac{3.14 \times 100mm}{0.0254mm}=12362$

Electronic gear ratio $\left(\frac{B}{A}\right) = \frac{1024 \times 4 \times 2.4}{12362 \times 1} = \frac{Cn-24}{Cn-25}$

 $=\frac{9830.4}{12362}=\frac{49152}{61810}$

Preset values Cn-24 49152 Cn-25 61810


Control Block Diagram for Position Control

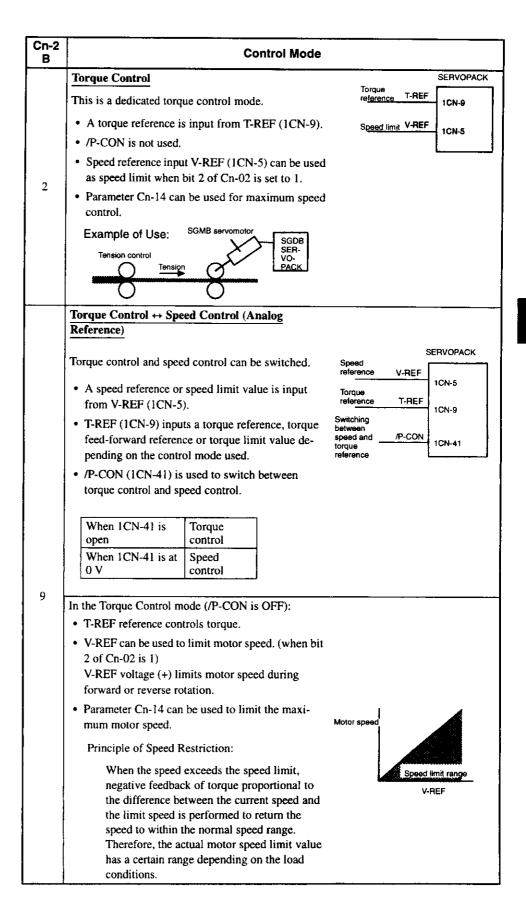
7. Set the travel distance in the parameters.

3.2.6 Using Torque Control

The SERVOPACK can provide the following torque control:

This section describes how to use levels 3 and 4 of the torque control function.

Selecting Torque Control


Use the following parameter to select level 3 or level 4 torque control.

Cn-2B	Control Mode Selection	Factory Setting: 0	For Speed/Torque Control and position Control
		1 Setting. 0	una position Control

This is dedicated torque control.

A motor torque reference value is externally input into the SERVOPACK to control torque.

Examples of Use: Tension control Pressure control

3.2.6 Using Torque Control

Cn-2 B			C	ontrol Mode	
	In the Speed Values set in	Control m bit 9 of pa	ode (/P-CON is trameter Cn-02	s ON): and bit 8 of Cr	n-02 determine the following:
		Parameter		Torque	
	Cn-02	Cn-02	Reference Input	Input (T-REF)	Remarks
	Bit 9	Bit 8	(V-REF) (1CN-5, 6)	(1CN-9, 10)	
	0	0	Speed contro		
		0	Speed reference	Cannot be used	
9	1 _		Speed control with torque feed-forward		Any value can be set in bit 8 of Cn-02 (0 and 1 have the same effect).
			Speed reference	Torque feed-forward	For details of speed control with torque feed-forward, refer to Section 3.2.7 Using Torque Feed-forward Function.
	0 1		Speed control with torque limit by analog voltage reference		For details of speed control with torque limit by analog voltage reference, refer to
		Speed reference	Torque limit value	Section 3.2.8 Using Torque Restriction by Analog Voltage Reference.	
Position Control ++ Torque Control This mode allows switching between position control and torque con • /P-CON (1CN-41) is used to switch the control mode between post torque control.					
8	When ICN open When ICN 0 V		Position control Torque control		

3

input voltage

Set the slope

(TCRFGN).

Input Signals for Torque Control

The following input signals perform torque control.

→ Input T-REF	1CN-9	Torque Reference Input	For Speed/Torque Control Only
→ Input SG	1CN-10	Signal Ground for Torque Reference Input	For Speed/Torque Control Only

These signals are used when torque control is selected.

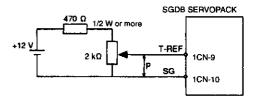
Motor torque is controlled so that it is proportional to the input voltage between T-REF and SG.

Standard Setting

Cn-13 = 30: This setting means that 3 V is equivalent to rated torque.

Examples: +3 V input → Rated torque in forward direction

+9 V input → 300% of rated torque in forward direction


 $-0.3 \text{ V input} \rightarrow 10\%$ of rated torque in reverse direction

Parameter Cn-13 can be used to change the voltage input range.

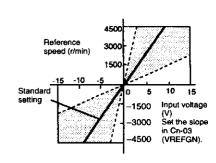
Example of Input Circuit:

See the figure on the right.

 For noise control, always use twisted-pair cables.

-10

Standard setting


Example of Variable Resistor for Speed Setting:
 Model 25HP-10B manufactured by Sakae Tsushin Kogyo Co., Ltd.

→ Input V-REF	1CN-5	Speed Reference Input (or Speed Limit Input)	For Speed/Torque Control Only
Input SG	1CN-6	Signal Ground for Speed Reference Input	For Speed/Torque Control Only

These signals are used when speed control is selected.

For normal speed control, always connect these signal terminals.

Motor speed is controlled so that it is proportional to the input voltage between V-REF and SG.

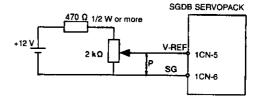
3.2.6 Using Torque Control

Standard Example

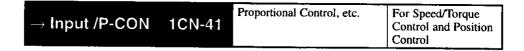
Cn-03 = 500: This setting means that 6 V is equivalent to 3000 r/min.

Examples: +6 V input → 3000 r/min in forward direction

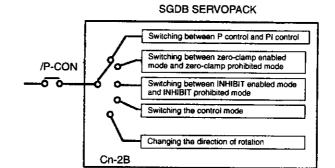
+1 V input \rightarrow 500 r/min in forward direction


-3 V input → 1500 r/min in reverse direction

Parameter Cn-03 can be used to change the voltage input range. (This is also applicable to speed restriction.)


Example of Input Circuit:

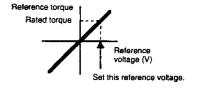
See the figure on the right.


 For noise control, always use twisted-pair cables.

- Example of Variable Resistor for Speed Setting:
 Model 25HP-10B manufactured by Sakae Tsushin Kogyo Co., Ltd.
- Using /P-CON Signal

The function of this input signal varies according to the Cn-2B setting.

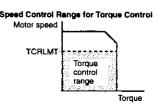
Cn-2B Setting	Meaning of /P-CON Signal
0, 1	Switching between P control and PI control.
2	Not used
7, 8, 9	Switching the control mode.
10	Switching between zero-clamp enabled and zero-clamp prohibited modes.
11	Switching between INHIBIT enabled and INHIBIT prohibited modes.


Parameters for Torque Control

Set the following parameters for torque control according to the servo system used.

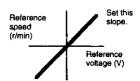
Cn-13	TCRFGN Torque Reference Gain	Unit: 0.1 V/Rated Torque	Setting Range: 10 to 100	•	For Speed/Torque Control Only
-------	------------------------------------	--------------------------------	--------------------------------	---	----------------------------------

Sets the voltage range of torque reference input T-REF (1CN-9) according to the output form of the host controller or external circuit.


The factory setting is 30, so the rated torque is 3 $V(30 \times 0.1)$.

Cn-14 TCRLMT Unit: Setting Factory For Speed/Torque For Speed/Torque Control 10000 For Speed/Torque Control Only
--

Sets a motor speed limit value in torque control mode.


This parameter is used to prevent machine overspeed during torque control.

Cn-03	VREFGN Speed Reference Gain	Unit: (r/min)/V	J	For Speed/Torque Control Only
i	i ·		to 2000	_

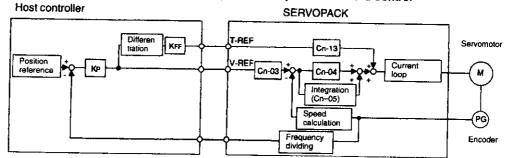
Sets the voltage range of speed reference input V-REF (1CN-5) according to the output form of the host controller or external circuit.

The factory setting is rated speed $\pm 1\%/6V$.

Motor Series	Factory Setting
SGMB (1500 r/min)	250

3.2.7 Using the Torque Feed-forward Function

For speed control (analog reference) only.


The torque feed-forward function reduces positioning time. It differentiates a speed reference at the host controller (prepared by the customer) to generate a torque feed-forward reference, then sends this torque feed-forward reference and the speed reference to the SERVOPACK.

Too high a torque feed-forward value will result in overshoot or undershoot. To prevent this, set the optimum value while observing system response.

3.2.7 Using the Torque Feed-forward Function

Connect a speed reference signal line and torque feed-forward reference signal line from the host controller to V-REF (1CN-5, 1CN-6) and T-REF (1CN-9, 1CN-10), respectively.

Schematic Block Diagram for Torque Feed-forward Control

KP: Position loop gainKFF: Feed-forward gain

How to Use Torque Feed-forward Function

To use the torque feed-forward function, set the following memory switch to 1.

I CII UZ DK 3	Selection of Torque	Factory	For Speed/Torque Control
	Feed-forward Function	Setting: 0	Only

Enables the torque feed-forward function.

To use the torque feed-forward function, input a speed reference to the V-REF terminal and a torque feed-forward reference to the T-REF terminal.

The host controller must generate a torque feed-forward reference.

Setting	Meaning
0	Does not use the torque feed-forward function.
1	Uses the torque feed-forward function.

This function cannot be used with the function for torque restriction by analog voltage reference, described in Section 3.2.8 Using Torque Restriction by Analog Voltage Reference.

For parameters and control modes, refer to Appendix D List of Parameters.

Setting a Torque Feed-forward Value in Parameter Cn-13

The factory setting is Cn-13 = 30. If, for example, the torque feed-forward value is \pm 3 V, torque is restricted to \pm 100% (rated torque).

Cn-13 TCRFGN Torque Reference Gain	Unit: 0.1 Setting V/Rated Range: to 100		For Speed/Torque Control Only
------------------------------------	---	--	----------------------------------

3.2.8 Using Torque Restriction by Analog Voltage Reference

For speed control (analog reference) only.

This function restricts torque by assigning the T-REF terminal (1CN-9, 1CN-10) a torque limit value in terms of analog voltage. Since torque reference input terminal T-REF is used as an input terminal, this function cannot be used for torque control.

Schematic Block Diagram for Torque Restriction by Analog Voltage Reference Torque limit value Speed reference V-REF Cn-13 Speed loop gain (Cn-04) Integration (Cn-05) Torque limit value Speed feedback

■ How to Use Torque Restriction by Analog Voltage Reference

To use this torque restriction function, set the following memory switch to 1.

Cn-02 Bit 8	Torque Restriction by	Factory	For Speed/Torque Control
On-Oz Bit o	Analog Voltage Reference	Setting: 0	Only

Enables this torque restriction function.

To use this function, input a speed reference to the V-REF terminal and a torque limit value to the T-REF terminal.

This function cannot be used for torque control.

Torque restriction cannot be set separately for forward and reverse rotation. (The same setting applies to both forward and reverse rotation.)

Setting	Meaning
0	Does not use the T-REF terminal as a torque limit value input terminal.
11	Uses the T-REF terminal as a torque limit value input terminal.

This function cannot be used with the torque feed-forward function described in Section 3.2.7 Using Torque Feed-forward Function.

For parameters and control modes, refer to Appendix D List of Parameters.

Setting a Torque Limit Value in Parameter Cn-13

The factory setting is Cn-13 = 30. If, for example, the torque limit value is 3 V, torque is restricted to 100% (rated torque).

Cn-13	TCRFGN Torque Reference Gain	Unit: 0.1 V/ Rated Torque	Setting Range: 10 to 100		For Speed/Torque Control Only
-------	------------------------------------	------------------------------	--------------------------------	--	----------------------------------

3.2.9 Using the Reference Pulse Inhibit Function (INHIBIT)

3.2.9 Using the Reference Pulse Inhibit Function (INHIBIT)

This function causes the SERVOPACK to stop counting input reference pulses in position control mode.

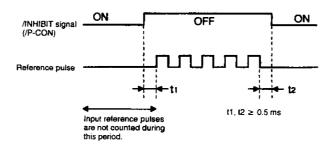
While this function is being used, the motor remains in servo locked (clamped) status. The /P-CON signal is used to enable or prohibit this function.

When this function is used, therefore, the /P-CON signal cannot be used to switch between proportion (P) control and proportional/integral (PI) control for speed loop. (PI control is always used.)

Reference pulse /P-CON /P-CON /P-CON /P-CON Feedback pulse

Schematic Block Diagram for INHIBIT Function

■ How to Use Reference Pulse Inhibit Function: INHIBIT


To use the INHIBIT function, set the Cn-2B constant as follows.

Cn-2B	Control Mode Selection	Factory Setting: 0	For Position Control Only
		Setting: 0	

Enables the INHIBIT function.

Meaning		
Does not use the INHIBIT function. Reference pulses are always counted.		
Uses the INHIBIT function. /P-CON signal is used to enable or prohibit the INHIBIT function.		
/P-CON Meaning		
OFF Counts reference pulses.		
ON Prohibits the SERVOPACK from counting reference pulses. The motor remains in servo locked (clamped) status.		

Relationship between INHIBIT Signal and Reference Pulse

3.2.10 Using the Reference Pulse Input Filter Selection Function

This function selects a reference pulse input filter inside the SERVOPACK according to the output form of reference pulses from the host controller.

■ How to Use Reference Pulse Input Filter

Set the following memory switch according to the output form of reference pulses from the host controller:

Cn-02 Bit F	Reference Pulse Input Filter	Factory	For Position Control Only
ON-02 Dit 1	Selection Function	Setting: 0	

Sets the memory switch according to the output form (line driver or open collector) of reference pulses from the host controller.

Setting	Meaning
0	Output form of reference pulses from host controller: Line driver output (maximum frequency of reference pulse: 450 kpps)
1	Output form of reference pulses from host controller: Open collector output (maximum frequency of reference pulse: 200 kpps)

For open collector output, the wire length must be as short as possible (maximum 3 m).

3.2.11 Using the Analog Monitor

3.2.11 Using the Analog Monitor

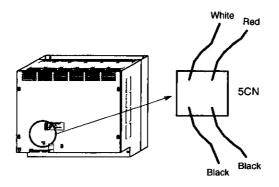
The following two analog voltage monitor signals are output.

Output	TRQ-M 1CN-16	Torque Monitor	For Speed/Torque Control and Position Control
Output	VTG-M 1CN-17	Speed Monitor	For Speed/Torque Control and Position Control

The following memory switch is used to modify the signal specifications.

	Bit 6	TRQ-M Specifications	Factory Setting: 0	
Cn-02	Bit 7	VTG-M Specifications	Factory Setting: 0	
	Bit E	Error Pulse Monitor Level Changeover	Factory Setting: 0	

TRQ-M

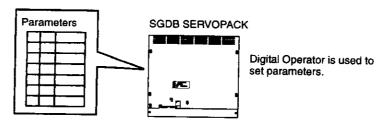

Cn-02 Bit 6	Control Mode	Specifications
0		Torque monitor (\(\pm 2 \) V/\(\pm 100\% \) torque)
1	Torque control	Undefined
	Speed control	Speed reference monitor*
	Position control	Reference pulse speed monitor*

VTG-M

Cn-02 Bit 7	Control Mode	Specifications	
0		Speed monitor*	
1	Speed/torque control	Undefined	
	Position control	Error pulse monitor	Cn-02 bit E = 0: $\mp 0.05 \text{ V/} \pm 1$ reference unit Cn-02 bit E = 1: $\mp 0.05 \text{ V/} \pm 100$ reference units

^{*} The unit is $\mp 2V/\pm 1000$ r/min.

Analog monitor can also be available with exclusive-use cable (Model: DE9404559) from 5CN connector.


Cable Color	Signal Name	Contents
Red	VTG-M	Speed/error pulse monitor
White	TRQ-M	Torque/speed reference monitor
Black (x2)	GND	Grounding

3.3 Setting Up the Σ SERVOPACK

This section describes how to set parameters to operate the SGDB SERVOPACK.

3.3.1 Setting Parameters

 Σ -series SERVOPACKs provide many functions, and have parameters called "parameters" to allow the user to specify each function and perform fine adjustment.

Parameters are divided into the following two types.

Each bit of this switch is turned ON or OFF to specify a function.		
A numerical value such as a torque limit value or speed loop gain is set in this constant.		

Parameter	N	ame and Code	Remarks		
Cn-01	Cn-01 Memory switch Cn-02 Memory switch		Each bit number has a switch		
Cn-02			(ON/OFF).		
Cn-03	VREFGN	Speed reference gain			
Cn			-		
Cn		***	Parameter setting		
Cn-2D	OUTSEL	Output signal selection			

For a list of parameters, refer to Appendix D List of Parameters.

For details of how to set parameters, refer to Section 4.1.6 Operation in Parameter Setting Mode.

3

3.3.2 Setting the Jog Speed

Use the following parameter to set or modify a motor speed when operating the Σ -series Servo from a Digital Operator:

Cn-10	JOGSPD Jog Speed		Setting Range: 0 to 10000	Factory Setting: 500	For Speed/Torque Control and Position Control
-------	---------------------	--	---------------------------------	----------------------------	---

This constant is used to set a motor speed when the motor is operated using a Digital Operator.

If a value higher than the maximum speed is set, the maximum speed value is used.

Operation Using Digital Operator

3.3.3 Setting the Number of Encoder Pulses

3.3.3 Setting the Number of Encoder Pulses

To ensure that the Σ -series Servo System operates properly, set the type of the encoder to be used and the number of encoder pulses per revolution in the following parameters:

Cn-01 Bit E Encoder Type Selection	Factory Setting: 0	For Speed/Torque Control and Position Control
------------------------------------	-----------------------	---

Set the encoder type according to the servomotor type to be used.

After changing the memory switch setting, turn the power OFF, then ON.

Motor Type Encoder Specifications	Number of Encoder Pulses Per Revolution	Preset Value
2	Incremental encoder: 8192 pulses per revolution	
6	Incremental encoder: 4096 pulses per revolution	0
W	Absolute encoder: 1024 pulses per revolution	
S	Absolute encoder: 8192 pulses per revolution	1

PULSNO Number of Encoder Pulses	Unit: Pulses Per Revolution	Setting Range: Number of Encoder Pulses	For Speed/Torque Control and Position Control
---------------------------------------	--------------------------------	---	---

Set the number of encoder pulses according to the servomotor type to be used. If this parameter is set incorrectly, system operation cannot be guaranteed.

After changing the memory switch setting, turn the power OFF, then ON.

Motor Type Encoder Specifications	Number of Encoder Pulses Per Revolution	Preset Value
2	Incremental encoder: 8192 pulses per revolution	8192
6	Incremental encoder: 4096 pulses per revolution	4096
W	Absolute encoder: 1024 pulses per revolution	1024
S	Absolute encoder: 8192 pulses per revolution	8192

3.3.4 Setting the Motor Model

To ensure that the Σ -series Servo System operates properly, set the model of the servomotor to be used in the following parameter.

Cn-2A	Motor Selection	For Speed/Torque Control and
011 27		Position Control

Set this memory switch according to the servomotor model to be used. After changing the parameter setting, turn the power OFF, then ON.

Group	SERVOPACK Model	Motor Model	Cn-2A Setting
2BA	SGDB-2BAD	SGMB-2BA□A	211
		SGMB-2BA□B	215
3ZA	SGDB-3ZAD	SGMB-3ZA□A	213
		SGMB-3ZA□B	214
3GA	SGDB-3GAD	SGMB-3GA□A	216
		SGMB-3GA□B	217
2BD	SGDB-2BDD	SGMB-2BA□D	218
		SGMB-2BA□E	219
3ZD	SGDB-3ZDD	SGMB-3ZA□D	220
		SGMB-3ZA□E	226
3GD	SGDB-3GDD	SGMB-3GA□D	227
		SGMB-3GA□E	228
4ED	SGDB-4EDD	SGMB-4EA□D	229
		SGMB-4EA□E	230
5ED	SGDB-5EDD	SGMB-5EA□D	231
		SGMB-5EA□E	232

The motor model used can be changed within the same group by altering the Cn-2A setting.

3.3.5 Adjusting the Encoder Supply Voltage

3.3.5 Adjusting the Encoder Supply Voltage

The encoder power voltage at the encoder input part must be between 4.75 and 5.25 V. If the encoder cable is long, adjust the encoder supply voltage by setting the following parameter.

Cn-20	Encoder Power Voltage Adjustment	Unit: 0.1 mV	Factory Setting: 52500	For Speed/Torque Control and Position Control
-------	-------------------------------------	--------------	------------------------	---

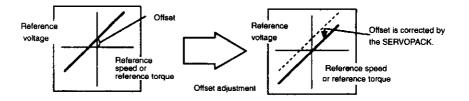
The following values apply to standard cables:

Length of cables Encoder	3 m	5 m	10 m	15 m	20 m
15-bit absolute encoder				55000	57000
12-bit absolute encoder Incremental encoder		52500		54000	55500

IMPO	RTA	NT
	N L	T 1 T

Note that the system may fail to operate normally or break down if the setting is too high or too low.

3.4 Setting the Stop Mode


This section describes how to stop the motor properly.

3.4.1 Adjusting the Offset

"Why Does the Motor Not Stop?"

When 0 V is specified as reference voltage for speed/torque control (analog reference), the motor may rotate at a very slow speed and fail to stop. This happens when reference voltage from the host controller or external circuit has a slight reference offset (in mV units). If this offset is adjusted to 0 V, the motor will stop.

When reference voltage from the host controller or external circuit has an offset

Adjusting the Reference Offset

The following two methods can be used to adjust the reference offset to 0 V.

Automatic adjustment of reference off- set	Reference offset is automatically adjusted to 0 V.
Manual adjustment of reference offset	Reference offset can be intentionally set to a specified value.

IMPORTANT

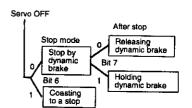
If a position control loop is formed in the host controller, do not use automatic adjustment. Always use manual adjustment.

For detailed adjustment procedures, refer to the following sections.

	Adjustment Method
Automatic adjustment of reference off- set	Section 4.2.4 Reference Offset Automatic Adjustment
Manual adjustment of reference offset	Section 4.2.5 Reference Offset Manual Adjustment Mode

3.4.2 Using the Dynamic Brake (DB)

3.4.2 Using the Dynamic Brake (DB)


To stop the servomotor by applying **dynamic brake** (**DB**), set desired values in the following memory switch. If dynamic brake is not used, the servomotor will stop naturally due to machine friction.

Cn-01Bit 6	How to Stop Motor When Servo is Turned OFF	Factory Setting: 0	For Speed/Torque Control and Position Control
Cn-01Bit 7	Operation to Be Performed When Motor Stops After Servo is Turned OFF		For Speed/Torque Control and Position Control

The SERVOPACK enters servo OFF status when:

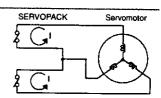
- Servo ON input signal (/S-ON, 1CN-40) is turned OFF
- Servo alarm arises
- Power is turned OFF

Specify how to stop the motor when one of the above events occurs during operation.

	Setting	Meaning
	0	Stops the motor by dynamic brake.
Cn-01 bit 6		Causes the motor to coast to a stop. The motor power is OFF and stops due to machine friction.

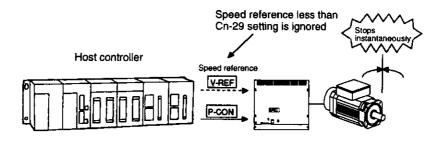
If dynamic brake stop mode is selected, specify the operation to be performed when the motor stops.

	Setting	Meaning
Cn-01 bit 7	0	Releases dynamic brake after the motor stops.
CIPOT DIC 7	1	Does not release dynamic brake even after the motor stop.


For 2.0-kW models, bit 7 of Cn-01 can be set to 0 only.

◆ Dynamic brake (DB)

One of the general methods to cause a motor to stop suddenly.


"Dynamic brake" suddenly stops a servomotor by shorting its electrical circuit.

3.4.3 Using the Zero-Clamp

The zero-clamp function is used for a system in which the host controller does not form a position loop by speed reference input.

In other words, this function is used to cause the motor to stop and enter a servo locked status when the input voltage of speed reference V-REF is not 0 V. When the zero-clamp function is turned ON, an internal position loop is temporarily formed, causing the motor to be clamped within one pulse. Even if the motor is forcibly rotated by external force, it returns to the zero-clamp position.

Setting the Memory Switch

Set the following memory switch so that input signal /P-CON can be used to enable or disable the zero-clamp function.

Setting:0	Cn-2B	Control Mode Selection	Factory Setting:0	For Speed Control Only
-----------	-------	------------------------	----------------------	------------------------

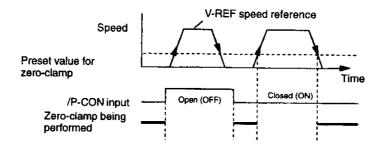
→ Input /P-CON 1CN-41	•	For Speed/Torque Control and Position Control
-----------------------	---	---

Cn-2B		Contro	l Mode		
	Zero-clamp Speed	Control		SGI	B SERVOPACK
	This speed control al function to be set wh	•	Speed reference	V-REF	1CN-5
	A speed reference (1CN-5).	Zero-clamp	/P-CON	1CN-41	
10	/P-CON (1CN-41) zero-clamp function	•			
	/P-CON (1CN-41) is open (OFF)	Turns zero-clamp function OFF	Zero-clamp is perfollowing two controls /P-CON signal is	onditions	are met:
	/P-CON (1CN-41) is closed (0 V)	Turns zero-clamp function ON	Motor speed is t Cn-29 (ZCLVL)	elow the	

3.4.4 Using the Holding Brake

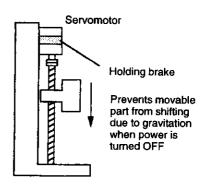
Setting the Motor Speed Level

Set in the following parameter the motor speed level at which zero-clamp is to be performed:


Cn-29		Setting Range: 0 to 10000	Factory Setting: 10	For Speed Control
	——————————————————————————————————————	 10 10000	Journal of the state of the sta	Only

If zero-clamp speed control is selected, set the motor speed level at which zero-clamp is to be performed. If a value higher than the maximum motor speed is set, the maximum speed value is used.

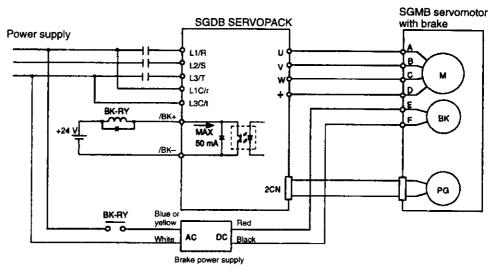
Conditions for Zero-clamp


Zero-clamp is performed when all the following conditions are met:

- Zero-clamp speed control is selected (Parameter Cn-2B=10).
- /P-CON (1CN-41) is turned ON (0 V).
- Motor speed drops below the preset value.

3.4.4 Using the Holding Brake

Holding brake is useful when a servo drive is used to control a vertical axis. A servomotor with brake prevents the movable part from dropping due to gravitation when the system power is turned OFF.


IMPORTANT

The built-in brake in servomotor with brake is a de-energization operation type, which is used for holding purposes only and cannot be used for braking purposes. Use the holding brake only to retain a stopped motor. Brake torque is more than about 120% of the rated motor torque.

■ Wiring Example

Use SERVOPACK contact output-signal /BK and brake power supply to form a brake ON/OFF circuit.

An example of standard wiring is shown below.

BK-RY: Brake control relay

Brake power supply has two types (200 V, 100 V). Do not use a 400-V power supply for the brake.

	Brake Interlock Output	For Speed/Torque
Output /BK		Control and Position Control

This output signal controls the brake when a motor with brake is used. This signal terminal need not be connected when a motor without brake is used.

Related Parameters

Cn-12	Time delay from brake signal until servo OFF
Cn-15	Speed level for brake signal output during operation
Cn-16	Output timing of brake signal during motor operation

ON Status: Circuit is closed or signal is at low level.	Releases the brake.
OFF Status: Circuit is open or signal is at high level.	Applies the brake.

Set the following parameter to specify the 1CN pin to which the BK signal is output.

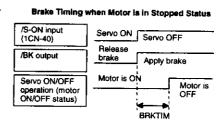
Cn-2D OUTSEL Output Signal Selection	Setting Range: 110 to 666	Factory Setting: 210	For Speed/Torque Control and Position Control
---	------------------------------	-------------------------	---

This parameter is used to select a function signal as the 1CN output signal.

3.4.4 Using the Holding Brake

ls place	Select the 1CN-25 and 1CN-26 (/COIN//V-CMP) functions.
10s place	Select the 1CN-27 and 1CN-28 (/TGON) functions.
100s place	Select the 1CN-29 and 1CN-30 (/S-RDY) functions.

Example: /BK is output to 1CN-27 and 1CN-28. Cn-2D=[]4[]


Preset value	Function	
0	/COIN//V-CMP (Can be allocated to 1CN-25 and 1CN-26 only.)	
1	/TGON	
2	/S-RDY	
3	/CLT	
4	/BK	
5	Overload warning	
6	Overload alarm	

Brake ON Timing

If the machine moves slightly due to gravity when the brake is applied, set the following parameter to adjust brake ON timing:

Cn-12	BRKTIM	Time delay from the time a brake signal is output until servo OFF status occurs	Unit: 10 ms	Setting Range: 0 to 50		For Speed/Torque Control and Position Control	
-------	--------	--	----------------	------------------------------	--	---	--

This parameter is used to set output timing of brake control signal /BK and servo OFF operation (motor output stop) when SGMB servomotor with brake is used.

With the standard setting, the servo is turned OFF when /BK signal (brake operation) is output. The machine may move slightly due to gravitation. This movement depends on machine configuration and brake characteristics. If this happens, use this parameter to delay servo OFF timing to prevent the machine from moving.

For brake ON timing during motor operation, use Cn-15 and Cn-16.

Setting the Holding Brake

Set the following parameters to adjust brake ON timing so that holding brake is applied when the motor stops.

Cn-15	BRKSPD	Speed Level at which Brake Signal Is Output during Motor Operation	Unit: r/min	Setting Range: 0 to 10000	Factory Setting: 100	For Speed/Torque Control and Position Control
Cn-16	BRKWAI	Output Timing of Brake Signal during Motor Operation	Unit: 10 ms	Setting Range: 10 to 100	Factory Setting: 50	For Speed/Torque Control and Position Control

Cn-15 and Cn-16 are used for SGMB servomotors with brake. Use these parameters to set brake timing used when the servo is turned OFF by input signal /S-ON (1CN-40) or alarm occurrence during motor rotation.

Brakes for SGMB servomotors are designed as holding brakes. Therefore, brake ON timing when the motor stops must be appropriate. Adjust the parameter settings while observing machine operation.

Power OFF by /S-ON input (1CN-40) or alarm occurrence Stop by dynamic brake or coasting to a stop (Cn-01 bit 6)

BHKSPD (Cn-15)

//BK output Release Apply brake

(Cn-16) When this time elapses, /BK signal is output.

BRKWAI

Brake Timing when Motor is in Stopped Status

Conditions for /BK Signal Output During Motor Operation

The circuit is opened in either of the following situations:

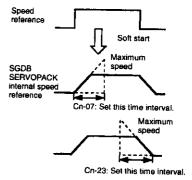
- Motor speed drops below the value set in Cn-15 (BRKSPD) after servo OFF occurs.
- The time set in Cn-16 (BRKWAI) has elapsed since servo OFF occurred.

If a value higher than the maximum speed is set, the maximum speed value is used.

3.5 Running the Motor Smoothly

This section explains how to run the servomotor smoothly.

3.5.1 Using the Soft Start Function


The soft start function adjusts progressive speed reference input inside the SERVOPACK so that acceleration and deceleration can be as constant as possible. To use this function, set the following parameters.

Cn-07	SFSACC Soft Start Time (Acceleration)	Unit: ms	Setting Range: 0 to 10000	Factory Setting: 0	For Speed Control Only
Cn-23	SFSDEC Soft Start Time (Deceleration)	Unit: ms	Setting Range: 0 to 10000	Factory Setting: 0	For Speed Control Only

In the SERVOPACK, a speed reference is multiplied by the acceleration or deceleration value set in Cn-07 or Cn-23 to provide speed control.

Smooth speed control can be achieved when progressive speed references are input or when contact input speed control is used.

Set these parameters as follows.

Cn-07: Time interval from the time the motor starts until the maximum speed is reached

Cn-23: Time interval from the time the motor is running at the maximum speed until it stops

3.5.2 Using the Smoothing Function

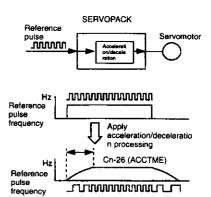
The smoothing function adjusts constant-frequency reference input inside the SERVOPACK so that acceleration and deceleration can be as constant as possible. To use this function, set the following parameter.

Cn-26	ACCTME Position Reference Acceleration/Deceleration Time Constant (Smoothing)	Unit: 0.1 ms	Setting Range: 0 to 640	Factory Setting: 0	For Position Control Only	
-------	---	-----------------	-------------------------------	-----------------------	------------------------------------	--

This function performs acceleration/deceleration processing for input reference pulses (primary lag characteristics).

This function prevents the motor from running at progressive speeds in the following cases:

- When the host controller which outputs references cannot perform acceleration/deceleration processing
- When reference pulse frequency is too low
- When reference electronic gear ratio is too high (more than 10 times)

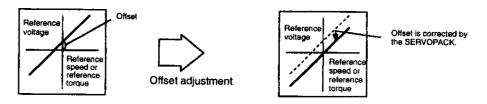

This function does not change the travel distance (number of pulses).

3.5.3 Adjusting the Gain

If speed loop gain or position loop gain exceeds the allowable limit for the servo system including the machine to be controlled, the system will vibrate or become too susceptible. Under such conditions, smooth operation cannot be expected. Reduce each loop gain value to an appropriate value.

For servo gain adjustment, refer to the following section:

Section 3.6.2 Setting Servo Gain



3.5.5 Setting the Torque Reference Filter Time Constant

3.5.4 Adjusting the Offset

If reference voltage from the host controller or external circuit has an offset in the vicinity of 0 V, smooth operation cannot be expected. Adjust the reference offset to 0 V.

When Reference Voltage from Host Controller or External Circuit has an Offset

How to Adjust the Reference Offset

The following two methods are available to adjust the reference offset to 0 V.

Automatic adjustment of reference offset	Reference offset is automatically adjusted.
Manual adjustment of reference offset	Reference offset can be intentionally set to a specified value.

IMPORTANT

If a position control loop is formed in the host controller, do not use automatic adjustment. Always use manual adjustment.

For detailed adjustment procedures, refer to the following sections:

	Adjustment Method
Automatic adjustment of reference offset	Section 4.2.4 Reference Offset Automatic Adjustment
Manual adjustment of reference offset	Section 4.2.5 Reference Offset Manual Adjustment Mode

3.5.5 Setting the Torque Reference Filter Time Constant

If the machine causes vibration, possibly resulting from the servo drive, adjust the following filter time constant. Vibration may stop.

Cn-17 TRQFIL Torque Reference Filter Time Constant	Unit: 100 µs	Setting Range: 0 to 250	For Speed/Torque Control and Position Control
--	-----------------	-------------------------------	---

Cn-17 is a torque reference filter time constant for the SGDB SERVOPACK. The smaller the value, the higher the torque control response. There is, however, a certain limit depending on machine conditions.

With the standard setting, the machine may cause vibration resulting from the servo drive. In this case, increase the constant setting. Vibration may stop. Vibration can be caused by incorrect gain adjustment, machine problems and so on.

3

Switching between the Primary and Secondary Torque Reference Filters

8. The following memory switch can be used to switch between the primary and secondary torque reference filters. The filter to be used depends on machine characteristics. If vibration occurs, select the appropriate filter by changing the memory switch setting.

Cn-02 Bit C	Torque Reference Filter Selection	Factory Setting: 0	1	For Speed/Torque Control and Position Control
-------------	-----------------------------------	-----------------------	---	---

0: Primary filter

1: Secondary filter

3.6 Minimizing Positioning Time

This section describes how to minimize positioning time.

3.6.1 Using the Autotuning Function

If speed loop gain and position loop gain for the servo system are not set properly, positioning may become slow. Techniques and experience are required to set these servo gain values according to machine configuration and machine rigidity.

Σ-series SERVOPACKs have an autotuning function that automatically measures machine characteristics and sets the necessary servo gain values. With this function, even first-time servo users can easily perform tuning for servo gain. Servo gain values are set in parameters.

The following parameters can be automatically set by the autotuning function.

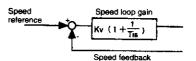
Parameter	Meaning	
Cn-04	Speed loop gain	
Cn-05	Speed loop integration time constant	
Cn-1A	Position loop gain	

For details of how to perform autotuning, refer to Section 4.2.3 Autotuning.

3.6.2 Setting the Servo Gain

Check and reset the servo gain when:

- Automatically set servo gain values need to be checked after autotuning.
- Each servo gain value checked in the above procedure is to be directly set for another SER-VOPACK.
- Response performance needs to be further enhanced after autotuning, or servo gain values need to be reset for a system with lower response performance.


Setting the Speed Loop

Set the following parameters related to speed loop as necessary.

Cn-04	LOOPHZ Speed Loop Gain (Kv)	Unit: Hz	Setting Range: 1 to 2000	Factory Setting: 80	For Speed/Torque Control and Position Control
Cn-05	PITIME Speed Loop Integration Time Constant (Ti)	Unit: 0.01 ms	Setting Range: 200 to 51200	Factory Setting: 2000	For Speed/Torque Control and Position Control

Cn-04 and Cn-05 are a speed loop gain and an integration time constant for the SERVOPACK, respectively.

The higher the speed loop gain value or the smaller the speed loop integration time constant value, the higher the speed control response. There is, however, a certain limit depending on machine characteristics.

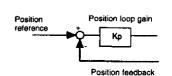
Note: If the Cn-28 constant is set, the maximum allowable Cn-04 setting may become smaller than 2000.

3

The unit of speed loop gain (Kv) is Hz, but this value is obtained when J_M equals J_L . Therefore, the value must be converted using load J (= J_L) as follows:

Kv value = setting x 2/[1 + (JL/JM)]
Kv value =
$$\frac{setting \times 2}{1 + (J_I/J_I)}$$

These parameters are automatically set by the autotuning function.

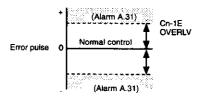

Setting the Position Loop

Set the following parameters related to position loop as necessary.

Cn-1A	POSGN Position Loop Gain (Kp)	, –	Factory Setting: 40	For Position Control Only
	(Kp)	to 200		

This parameter is a position loop gain for the SERVOPACK.

Increasing the position loop gain value provides position control with higher response and less error. However, there is a certain limit depending on machine characteristics. This gain is also valid for zero clamp operation.



This parameter is automatically set by the autotuning function.

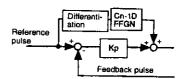
	OVERLV	Unit: 256	Setting	Factory	For Position Con-
Cn-1E	Overflow	References	Range: 1	Setting:	trol Only
			to 32767	1024	

Set in this parameter the error pulse level at which a position error pulse overflow alarm (alarm A.31) is detected.

If the machine permits only a small position loop gain value to be set in Cn-1A, an overflow alarm may arise during high-speed operation. In this case, increase the value set in this parameter to suppress alarm detection.

3.6.4 Using Proportional Control

3.6.3 Using Feed-forward Control


Feed-forward control shortens positioning time. To use **feed-forward control**, set the following parameter.

Cn-1D FFGN Unit: Setting Factory Setting: 0 For Position Control Or to 100	Cn-1D	FFGN Feed-forward Gain		Range: 0	1	For Position Control Onl
--	-------	---------------------------	--	----------	---	--------------------------

This parameter is set to apply feed-forward frequency compensation to position control inside the SER-VOPACK.

Use this parameter to shorten positioning time.

Too high a value may cause the machine to vibrate. For ordinary machines, set 80% or less in this constant.

3.6.4 Using Proportional Control

If parameter Cn-2B is set to 0 or 1 as shown below, input signal /P-CON serves as a PI/P control changeover switch.

- PI Control: Proportional/Integral control
- P Control: Proportional control

Cn-2B	Control Mode Selection	Factory	For Speed Control and
		Setting: 0	Position Control

Cn-2B	Control Mode					
	Speed Control, Posi This is normal speed co control. • Signal /P-CON (1CN switch between P con trol.	ntrol or position I-41) is used to	P/PI control changeover /P-CON	SGDB SERVOPACK		
0, 1	/P-CON (1CN-41) is open (OFF)	PI control		101141		
	/P-CON (1CN-41) is closed (0V)	P control				

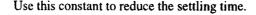
Feed-forward control

Control for making necessary corrections beforehand to prevent the control system from receiving the effects of disturbance.

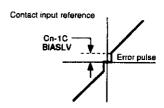
Using feed-forward control increases effective servo gain, enhancing response performance.

How to Use Proportional Control

Proportional control can be used in the following two ways.

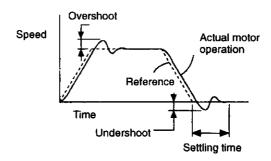

- When operation is performed by sending speed references from the host controller to the SERVOPACK, the host controller can selectively use P control mode for particular conditions only. This method can prevent the occurrence of overshoot and also shorten settling time. For particular conditions, refer to Section 3.6.6 Using Mode Switch.
- If PI control mode is used when the speed reference has a reference offset, the motor may rotate at a very slow speed and fail to stop even if 0 is specified as a speed reference. In this case, use P control mode to stop the motor.

3.6.5 Setting the Speed Bias


The settling time for positioning can be reduced by assigning bias to the speed reference output part in the SERVOPACK. To assign bias, use the following constant.

	BIASLV Bias		Setting Range: 0 to 450	Factory Setting: 0	For Position Control Only
--	----------------	--	-------------------------------	-----------------------	---------------------------

This parameter is set to assign an offset to a speed reference in the SGDB SERVOPACK. (In position control mode)


Set this parameter according to machine conditions.

3.6.6 Using the Mode Switch

Use the mode switch for the following purposes:

- To prevent overshoot during acceleration or deceleration (for speed control).
- To prevent undershoot during positioning in order to reduce settling time (for position control).

3.6.6 Using the Mode Switch

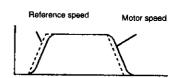
In other words, the mode switch is a function that automatically switches the speed control mode inside the SERVOPACK from PI control to P control while certain conditions are being established.

IMPORTANT

The mode switch is used to fully utilize performance of a servo drive to achieve very high-speed positioning. The speed response waveform must be observed to adjust the mode switch.

For normal use, the speed loop gain and position loop gain set by autotuning provide sufficient speed/position control.

Even if overshoot or undershoot occurs, they can be suppressed by setting the acceleration/deceleration time constant for the host controller, the soft start time constants (Cn-07, Cn-23), or smoothing time constant (Cn-26) for the SERVOPACK.

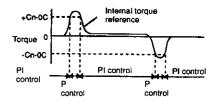

Selecting a Mode Switch

SERVOPACKs can use four types of mode switches (1 to 4). To select a mode switch, use the following memory switch.

	Memory witch Cn-01		Mode Switch Setting	Davanaha	
Bit D	Bit C	Bit B	wode Switch Setting	Parameter	Unit
_	_	1	Does not use mode switch.		
0	0	0	Uses torque reference as a detection point. (Standard setting)	Cn-0C	Percentage of rated torque; %
0	1	0	Uses speed reference as a detection point.	Cn-0D	Motor speed: r/min
1	0	0	Uses acceleration reference as a detection point.	Cn-0E	Motor acceleration: 10 (r/min)/s
1	1	0	Uses error pulse as a detection point.	Cn-0F	Reference unit

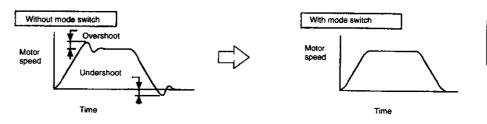
When Torque Reference Is Used as a Detection Point of Mode Switch (Standard Setting)

If a torque reference exceeds the torque value set in parameter Cn-0C, the speed loop switches to P control.

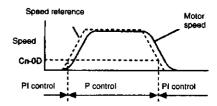


From PI control to P control

PI control means proportional/integral control and P control means proportional control. In short, switching "from PI control to P control" reduces effective servo gain, making the servo system more stable.

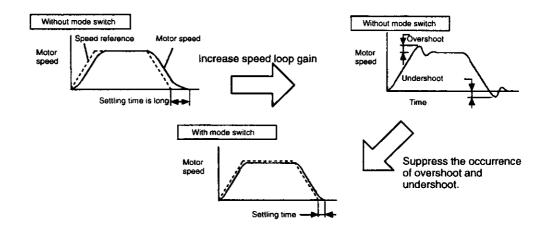

The SGDB SERVOPACK is factory set to this standard mode (Cn-OC = 200).

Example of Use:


If a mode switch is not used and PI control is always performed, torque may enter a saturation state during acceleration or deceleration, causing the motor speed to have overshoot or undershoot.

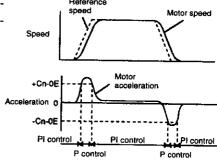
Using the mode switch suppresses torque saturation and prevents the motor speed from having overshoot and undershoot.

When Speed Reference Is Used as a Detection Point of Mode Switch


If a speed reference exceeds the value set in parameter Cn-0D, the speed loop switches to P control.

Example of Use:

The mode switch is used to reduce settling time.


Generally, speed loop gain must be increased to reduce settling time. Using the mode switch suppresses the occurrence of overshoot and undershoot when speed loop gain is increased.

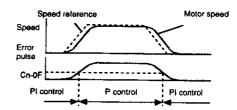
3.6.6 Using the Mode Switch

When Acceleration Is Used as a Detection Point of Mode Switch

If motor acceleration exceeds the value set in parameter Cn-0E, the speed loop switches to P control.

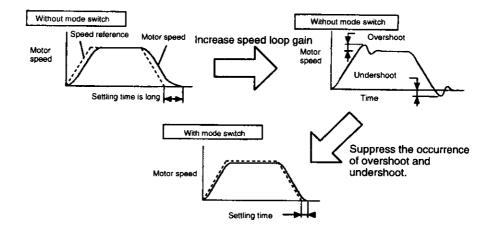
Example of Use:

If a mode switch is not used and PI control is always performed, torque may enter a saturation state during acceleration or deceleration, causing the motor speed to have overshoot or undershoot.


Using the mode switch suppresses torque saturation and prevents the motor speed from having overshoot and undershoot.

When Error Pulse Is Used as a Detection Point of Mode Switch

This is for position control only.

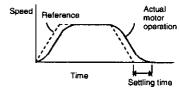

If an error pulse exceeds the value set in parameter Cn-0F, the speed loop switches to P control.

Example of Use:

The mode switch is used to reduce settling time.

Generally, speed loop gain must be increased to reduce settling time. Using the mode switch suppresses the occurrence of overshoot and undershoot when speed loop gain is increased.

Parameters


The parameters required to set each mode switch are summarized as follows.

r		1-	
Cr.01 Bit B	Mode Switch ON/OFF	Factory	For Speed Control and
Cn-01 Bit B		Setting: 0	Position Control

This parameter is used to enable or disable the mode switch function.

Setting	Meaning
0	Uses the mode switch function
1	Does not use the mode switch function

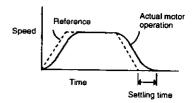
The SERVOPACK allows use of four different types of mode switch. To select a mode switch, set bits C and D of memory switch Cn-01.

Mode switch is used to reduce settling time and suppress undershoot when the motor stops. It switches PI control to P control when certain conditions are met.

Cn-01 Bit C	Mode Switch Selection	Factory Setting: 0	For Speed Control and Position Control
Cn-01 Bit D	Mode Switch Selection	Factory Setting: 0	For Speed Control and Position Control

Use the following parameters to set the mode switch to be used.

Memory Switch Cn-01		Mode Switch Type	Parameter for Setting Detection Point Cn-0C Cn-0D	
Bit D	Bit C			
0	0	Uses torque reference as a detection point.	Cn-0C	
0	1	Uses speed reference as a detection point.	Cn-0D	
1	0	Uses acceleration reference as a detection point.	Cn-0E	
1	1	Uses error pulse as a detection point.	Cn-0F	

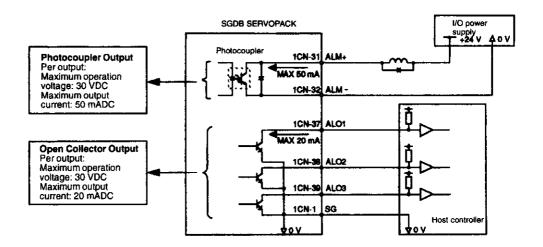

Mode switch is used to reduce settling time and suppress undershoot when the motor stops. It switches PI control to P control when certain conditions are met.

Cn-0C	TRQMSW	Mode Switch (Torque Reference)	Unit: %	Setting Range: 0 to 800	Factory Setting: 200	For Speed Control and Position Control
Cn-0D	REFMSW	Mode Switch (Speed Reference)	Unit: r/min	Setting Range: 0 to 10000	Factory Setting: 0	For Speed Control and Position Control
Cn-0E	ACCMSW	Mode Switch (Acceleration Reference)	Unit: 10 (r/min)/s	Setting Range: 0 to 3000	Factory Setting: 0	For Speed Control and Position Control
Cn-0F	ERPMSW	Mode Switch (Error Pulse)	Unit: Refer- ence Unit	Setting Range: 0 to 10000	Factory Setting: 10000	For Position Control Only

3.6.6 Using the Mode Switch

Mode switch is used to reduce settling time and suppress undershoot when the motor stops. It switches PI control to P control when certain conditions are met.

The SERVOPACK allows use of four different types of mode switch. To select a mode switch, set bits B, C and D of memory switch Cn-01.

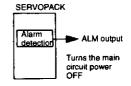

Men	Memory Switch Cn-01		Mode Switch Set-	Parameter	Unit
Bit D	Bit C	Bit B	ting		
_	_	1	Does not use mode switch.	_	-
0	0	0	Uses torque reference as a detection point.	Cn-0C	Percentage of rated torque: %
0	l	0	Uses speed reference as a detection point.	Cn-0D	Motor speed: r/min
1	0	0	Uses accelera- tion reference as a detection point.	Cn-0E	Motor acceleration: 10 (r/min)/s
1	1	0	Uses error pulse as a detection point.	Cn-0F	Reference unit

3.7 Forming a Protective Sequence

This section describes how to use I/O signals from the SERVOPACK to form a protective sequence for safety purposes.

3.7.1 Using the Servo Alarm Output and Alarm Code Output

Basic Wiring for Alarm Output Signals


Provide an external I/O power supply separately. There is no DC power available from SER-VOPACK for output signals.

■ Contact Output Signal ALM

Output ALM+ 1CN-31	Servo Alarm Output	For Speed/Torque Control and Position Control
Output - ALM- 1CN-32	Signal Ground for Servo Alarm Output	For Speed/Torque Control and Position Control

Signal ALM is output when the SERVOPACK detects an alarm.

Design the external circuit so that the main circuit power to the SGDB SERVOPACK is turned OFF by this alarm output signal.

ON status:	Circuit between 1CN-31 and 1CN-32 is closed. 1CN-31 is at low level.	Normal state
OFF status:	Circuit between 1CN-31 and 1CN-32 is open. 1CN-31 is at high level.	Alarm state

3.7.1 Using the Servo Alarm Output and Alarm Code Output

Alarm codes ALO1, ALO2, and ALO3 are output to indicate each alarm type.

■ Open Collector Output Signals ALO1, ALO2, and ALO3

Output → ALO1 1CI	N-37 Alarm Code Output	For Speed/Torque Control and Position Control
Output ALO2 1CM	N-38	For Speed/Torque Control and Position Control
Output ALO3 1CN	N-39	For Speed/Torque Control and Position Control
Output SG 1CN	Signal Ground for Alarm Code Output	For Speed/Torque Control and Position Control

These signals output an alarm code to indicate the type of an alarm detected by the SER-VOPACK.

Use these signals to display alarm codes at the host controller.

■ Relationship between Alarm Display and Alarm Code Output

Alarm Display and Alarm Code Output:

Alarm	Alarn	n Code O	utput	Servo Alarm	Alarm Type	Alarm Description
Display	ALO1	ALO2	ALO3	(ALM) Output	Atami Type	Alatin Description
ี่ลอ⊡้	×	×	×	×	Parameter error	An absolute encoder error occurred or parameter is faulty.
8 10	0	×	×	×	Overcurrent	Overcurrent flowed thor- ough the main circuit. SERVOPACK over- heated.
₽3□	0	0	×	×	Regenerative error Position error pulse overflow	Regenerative circuit is faulty. The number of pulses in error counter has exceeded the preset value.
ጸዛፀ	×	×	0	×	Main power voltage error	Main circuit DC voltage has exceeded approxi- mately 420 V.
85 :	0	×	0	×	Overspeed	Motor speed has exceeded the maximum allowable speed.
87🗂	0	0	0	×	Overload	Motor and SERVOPACK are overloaded.
a£₫	0	×	0	×	Overrun Disconnection of PG signal line	Overrun occurred due to motor or encoder signal wiring faults. Encoder signal line is disconnected.
88₫	×	×	×	×	Absolute en- coder error	Absolute encoder is faulty.
88:	0	0	0	Х	Heatsink over- heat	SERVOPACK heat sink overheated.
851	×	×	×	×	Reference in- put read error	Reference input failed to be detected.
ឧ⊱႐ံ	×	0	×	×	Power line open phase Power loss alarm Main circuit contactor error	One phase is missing from main circuit power supply. Power loss has occurred during operation. Main circuit contactor is defective.
CPF00					Digital Opera- tor transmis- sion error	Communication error oc- curred between Digital Operator and SERVO-
(250)	Undefined				PACK.	
899	×	×	×	0	No error	

3.7.2 Using the Servo ON Input Signal

O : Output transistor is ONX : Output transistor is OFF

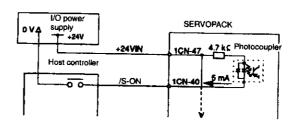
Displays an alarm category number.

For details, refer to Appendix E List of Alarm Displays.

When the servo alarm (ALM) is output, eliminate the cause of the alarm and the turn ON the following /ALMRST input signal to reset the alarm state.

	T	
Imput /ALBIDOT JON JA	Alarm Reset	For Speed/Torque
→ Input /ALMRST 1CN-44		Control and Position
		Control

This signal is used to reset the servo alarm state.


Form an external circuit so that the main circuit power supply is turned OFF when servo alarm is output. Alarm state is automatically reset when control power supply is turned OFF.

Alarm state can be reset using the Digital Operator.

When an alarm occurs, always eliminate the cause before resetting the alarm state. 6.2.1 Troubleshooting Problems with Alarm Display describes how to troubleshoot the system when an alarm arises.

3.7.2 Using the Servo ON Input Signal

This section describes how to wire and use contact input signal "servo ON (/S-ON)." Use this signal to forcibly turn the servomotor OFF from the host controller.

→ Input /S-ON 1CN-40	For Speed/Torque Control and Position Control
----------------------	---

This signal is used to turn the motor ON or OFF.

ON: 1CN-14 is at low level	Turns the motor ON. This is normal operation state (called "servo ON state").
OFF: 1CN-14 is at high level	Turns the motor OFF. This is in- operable state (called "servo OFF state").
	The servo can be turned OFF dur- ing motor operation only when an emergency stop is required.

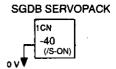
Motor is ON

Motor is
operated
according to
input signals.

Servo OFF

Motor is OFF Motor cannot run.

IMPORTANT

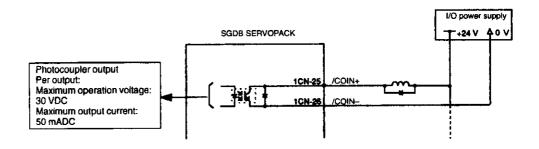

Do not use the /S-ON signal to start or stop the motor. Always use an input reference to start and stop the motor.

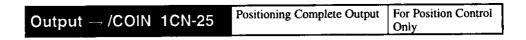
If the /S-ON signal is not to be used, set the following memory switch to 1:

Cn-01 Bit 0	Use of Servo ON Input	Factory	For Speed/Torque Control and
CII-O1 BIL O	Signal	Setting: 0	Position Control

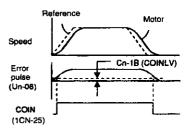
This memory switch is used to enable or disable the servo ON input signal /S-ON (1CN-40).

When external short-circuit wiring is omitted, set the memory switch to "1."




When /S-ON is not used, this short-circuit wiring can be omitted.

Setting	Meaning		
0	Uses servo ON signal /S-ON. (When 1CN-40 is open, servo is OFF. When 1CN-40 is at 0 V, servo is ON.)		
1	Does not use servo ON signal /S-ON. (The servo is always ON. This is the same as shorting 1CN-40 to 0 V.)		


3.7.3 Using the Positioning Complete Signal

This section describes how to wire and use contact output-signal "positioning complete output (/COIN)." This signal is output to indicate that servomotor operation is complete.

This output signal indicates that motor operation is complete during position control. The host controller uses this signal as an interlock to confirm that positioning is complete.

3.7.3 Using the Positioning Complete Signal

ON status:	Circuit between 1CN-25 and 1CN-26 is closed. 1CN-25 is at low level.	Positioning is complete (position error is below the preset value).
OFF status:	Circuit between 1CN-25 and 1CN-26 is open. 1CN-25 is at high level.	Preset value: Cn-1B (positioning complete range)

Preset Value: Cn-1B (positioning complete range)

Use the following parameter to output the /COIN signal.

Cn-2D	OUTSEL	Output signal selection	Setting Range: 110 to 666	Setting:	
		·	<u> </u>	210	

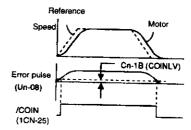
This parameter is used to specify a function signal as the 1CN output signal.

1s place	Select the 1CN-25 and 1CN-26 (/COIN//V-CMP) functions.
10s place	Select the 1CN-27 and 1CN-28 (/TGON) functions.
100s place	Select the 1CN-29 and 1CN-30 (/S-RDY) functions.

Example: Outputting a COIN signal

 $Cn-2D=\square\square 0$

(COIN is output to 1CN-25 and 1CN-26 only.)


Preset Value	Function			
0	/COIN//V-CMP (Can be allocated to 1CN-25 and 1CN-26 only.)			
1	/TGON			
2	/S-RDY			
3	/CLT			
4	/BK			
5	Overload warning			
6	Overload alarm			

Set the number of error pulses in the following parameter to adjust output timing of COIN (positioning complete output).

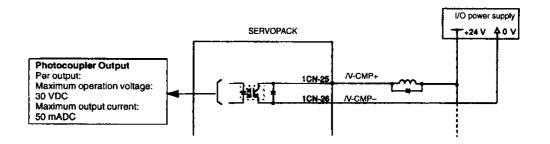
ı				7	-,		
j		COINLV	Positioning	Unit:	Setting	Factory	For Position
١	Cn-1B		Complete	Reference	Range: 0	Setting: 1	Control Only
ı			Range	Unit	to 250		Control Only

This parameter is used to set output timing of positioning complete signal (/COIN, 1CN-25) to be output when motor operation is complete after a position reference pulse has been input.

Set the number of error pulses in terms of reference unit (the number of input pulses that is defined using the electronic gear function).

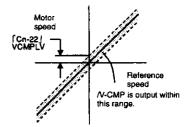
If too large a value is set in this parameter, error may become too small when the motor runs at a low speed, causing COIN to be output continuously.

COINLY does not affect the final positioning accuracy.


IMPORTANT

/COIN is a signal for position control.

For speed control, /V-CMP (speed coincidence output) is used instead. For torque control, /COIN is always ON.


3.7.4 Using the Speed Coincidence Output Signal

This section describes how to wire and use contact output signal "speed coincidence output (/V-CMP)." This signal is output to indicate that actual motor speed matches a reference speed. The host controller uses this signal as an interlock.

Output /V-CMP	1CN-25	Speed Coincidence Output	For Speed Control Only

This output signal indicates that actual motor speed matches the input speed reference during speed control.

ON status:	Circuit between 1CN-25 and 1CN-26 is closed. 1CN-25 is at low level.	Actual motor speed matches the speed reference (speed difference is below the preset value).
OFF status:	Circuit between 1CN-25 and 1CN-26 is open. 1CN-25 is at high level.	Actual motor speed does not match the speed reference (speed difference is greater than the preset value).

Preset value: Cn-22 (speed coincidence signal output width)

Use the following parameter to output the /V-CMP signal.

Cn-2D	OUTSEL	Output signal selection	Setting Range: 110 to 666	Factory Setting: 210	
-------	--------	-------------------------	---------------------------	----------------------------	--

This parameter is used to specify a function signal as the 1CN output signal.

1s place	Select the 1CN-25 and 1CN-26 (/COIN//V-CMP) functions.
10s place	Select the 1CN-27 and 1CN-28 (/TGON) functions.
100s place	Select the 1CN-29 and 1CN-30 (/S-RDY) functions.

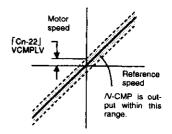
3.7.4 Using the Speed Coincidence Output Signal

Example:

Outputting a /V-CMP signal

 $Cn-2D=\square\square 0$

(/V-CMP is output to 1CN-25 and 1CN-26 only.)


Preset Value	Function	
0	/COIN//V-CMP (Can be allocated to 1CN-25 and 1CN-26 only.)	
1	/TGON	
2	/S-RDY	
3	/CLT	
4	/BK	
5	Overload warning	
6	Overload alarm	

Set the following parameter to specify the output conditions for speed coincidence signal /V-CMP.

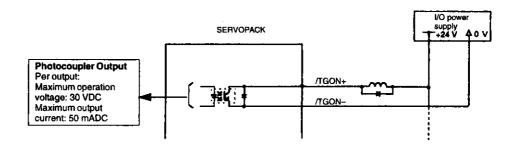
Cn-22 VCMPLV	Speed Coincidence Signal Output Width	1	Setting Range: 0 to 100	Factory Setting: 10	For Speed Control Only
--------------	--	---	-------------------------------	------------------------	------------------------------

Set the output conditions for speed coincidence signal /V-CMP (1CN-25).

/V-CMP signal is output when the difference between the reference speed and actual motor speed is not greater than the preset value.

Example: When preset value is 100 and reference speed is 2000 r/min.

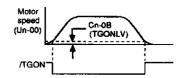
/V-CMP is ON (circuit between 1CN-25 and 1CN-26 is closed) when the speed is between 1900 and 2100 r/min.


IMPORTANT

/V-CMP is a signal for speed control.

For position control, /COIN (position complete output) is used instead. For torque control, /V-CMP is always ON.

3.7.5 Using the Running Output Signal


This section describes how to wire and use photocoupler output: a running output signal /TGON. This signal indicates that a servomotor is currently running.

Output /TGON		For Speed/Torque Control and Position Control
--------------	--	---

This output signal indicates that the motor is currently running.

It is used as an external interlock.

ON status:	Circuit is closed or signal is at low level.	Motor is running. (Motor speed is greater than the preset value.)
OFF status:		Motor is stopped. (Motor speed is below the preset value.)

Preset value: Cn-0B (zero-speed level)

Use the following parameter to specify the pin to which the /TGON signal is to be output.

Cn-2D	OUTSEL	Output signal selection	Setting Range: 110 to 666	Factory Setting: 210	
-------	--------	-------------------------	------------------------------	----------------------------	--

This parameter is used to specify a function signal as the 1CN output signal.

ls place	Select the 1CN-25 and 1CN-26 (/COIN//V-CMP) functions.
10s place	Select the 1CN-27 and 1CN-28 (/TGON) functions.
100s place	Select the 1CN-29 and 1CN-30 (/S-RDY) functions.

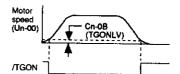
Example: /TGON is output to 1CN-27 and 1CN-28.

Cn-2D=[]1[]

3.7.5 Using the Running Output Signal

Preset value	Function	
0	/COIN//V-CMP (Can be allocated to 1CN-25 and 1CN-26 only.)	
1	/TGON	
2	/S-RDY	_
3	/CLT	-
4	/BK	
5	Overload warning	
6	Overload alarm	

Use the following parameter to specify the output conditions for /TGON (running output signal).

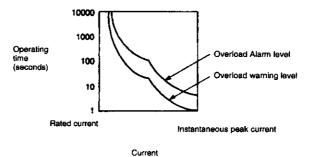

Cn-0B TGONLV Zero-Speed Level Unit: Range: 1 to 10000 Factory Setting: 20 For Speed/Tord Control and Position Control	Cn-0B
---	-------

This parameter is used to set the speed level at which the SERVOPACK determines that the motor is running and then outputs a signal.

The following signals are output when motor speed exceeds the preset value. (The circuit is closed when motor speed exceeds the preset value.)

Output signal of zero-speed

- /TGON
- · Status indication mode bit data
- Monitor mode Un-05 bit 4



3

3.7.6 Using the OL Warning and Alarm Output Signals

This section describes how to wire and use photocoupler output signals OLWRN (overload warning) and OL (overload alarm).

These two output signals are output when operation under the rated current or more continues for a certain period of time. The overload warning signal is output in 20% of the time required to output the overload alarm signal.

Photocoupler Output
Per output:
Maximum operation
voltage: 30 VDC
Maximum output
current: 50 mADC

Output OLWRN	Overload Warning Output	For Speed/Torque Control and Position Control
Output OL	Overload Alarm Output	For Speed/Torque Control and Position Control

OLWRN is an overload warning output signal, and OL is an overload alarm output signal.

ON status:	Circuit is closed or signal is at low level.	Normal state
OFF status:	Circuit is open or signal is at high level.	Warning or alarm state

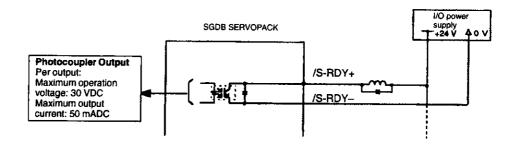
Use the following parameter to specify the pin to which the signal is to be output.

- 1				1	T-1	Y Y
1		OUTSEL	Output	Setting Range: 110	Factory	For Speed/Torque
- 1	Cn-2D		signal	to 666	Setting:	Control and
			selection		210	Position Control

This parameter is used to specify a function signal as the 1CN output signal.

ls place	Select the 1CN-25 and 1CN-26 (/COIN//V-CMP) functions.
10s place	Select the 1CN-27 and 1CN-28 (/TGON) functions.
100s place	Select the 1CN-29 and 1CN-30 (/S-RDY) functions.

3.7.7 Using the Servo Ready Output Signal


Example: Overload warning is output to 1CN-27 and 1CN-28. Cn-2D=□5□

Preset Value	Function		
0	/COIN/V-CMP (Can be allocated to 1CN-25 and 1CN-26 only.)		
1	/TGON		
2	/S-RDY		
3	/CLT		
4	/BK		
5	Overload warning		
6	Overload alarm		

3.7.7 Using the Servo Ready Output Signal

This section describes how to wire and use photocoupler output signal /S-RDY (servo ready).

"Servo ready" means that the SERVOPACK is not in servo alarm state when the main circuit is turned ON. For absolute encoder specifications, "servo ready" means that, in addition to the above, the SEN signal is at high level and the absolute encoder is also in ready state.

6	Servo Ready Output	For Speed/Torque
Output → /S-RDY		Control and Position
		Control

This signal indicates that the SERVOPACK is ready to receive servo ON signals.

ON status:	Circuit is closed or signal is at low level.	Servo ready state
OFF status:	Circuit is open or signal is at high level.	Not in servo ready state

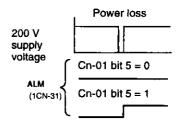
Use the following parameter to specify the pin to which the /S-RDY signal is to be output.

Cn-2D	OUTSEL	Output signal selection	Setting Range: 110 to 666	Factory Setting: 210		For Speed/Torque Control and Position Control
-------	--------	-------------------------------	---------------------------------	----------------------------	--	---

This parameter is used to specify a function signal as the 1CN output signal.

1s place	Select the ICN-25 and ICN-26 (/COIN//V-CMP) functions.
10s place	Select the 1CN-27 and 1CN-28 (/TGON) functions.
100s place	Select the 1CN-29 and 1CN-30 (/S-RDY) functions.

Example: /S-RDY is output to 1CN-29 and 1CN-30. $Cn-2D=2\square\square$


Preset Value	Function
0	/COIN//V-CMP (Can be allocated to 1CN-25 and 1CN-26 only.)
1	/TGON
2	/S-RDY
3	/CLT
4	/BK
5	Overload warning
6	Overload alarm

3.7.8 Handling of Power Loss

Use the following memory switch to specify whether to output a servo alarm when power loss occurs.

Cn-01 Bit 5	Operation to Be Performed at	Factory	For Speed/Torque Control and
OII-OI DIL 3	Recovery from Power Loss	Setting: 0	Position Control

If the SGDB SERVOPACK detects instantaneous voltage drop in power supply, it can output servo alarm A.F3 to prevent a hazardous situation. This memory switch is used to specify whether to output this alarm.

Setting	Meaning
0	Does not output a servo alarm after recovery from power loss.
1	Outputs a servo alarm after recovery from power loss.

Normally, set this memory switch to 0. If the /S-RDY signal is not to be used, set the memory switch to 1. The /S-RDY signal remains OFF while the main power supply is OFF, regardless of the memory switch setting.

3.8.1 Wiring Instructions

3.8 Special Wiring

This section describes special wiring methods including the one for noise control. Always refer to Section 3.8.1 Wiring Instructions and 3.8.2 Wiring for Noise Control, and refer to other sections as necessary.

3.8.1 Wiring Instructions

To ensure safe and stable operation, always refer to the following wiring instructions.

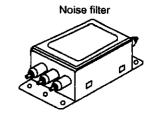
IMPORTANT

Always use the following cables for reference input and encoder wiring.

	Cable Type	Yaskawa Drawing No.	Maximum Allowable Length
For reference input	Twisted-pair cables	DE9406969	3 m (9.8 ft.)
For encoder	Multiconductor shielded twisted-pair cable	DE9414800 (for incremental encoder) DE9414801 (for absolute encoder)	20 m (65.6 ft.)

For a ground wire, use as thick a cable as possible.

- Trim off the excess portion of the cable to minimize the cable length.
- At least class 3 grounding (ground to 100 Ω or less) is recommended.
- · Always use one-line grounding.
- · If the motor is insulated from the machine, ground the motor directly.
- Select grounding phase and grounding point in accordance with the national code and consistent with sound local practices.


Do not bend or apply tension to cables.

• Since the conductor of a signal cable is very thin (0.2 to 0.3 mm), handle it with adequate care.

Use a noise filter to prevent noise interference.

(For details, refer to the following precaution.)

If the servo is to be used near private houses or may receive
noise interference, install a noise filter on the input side of
the power supply line. Since this SERVOPACK is designed as an industrial device, it provides no mechanism
to prevent noise interference.

To prevent malfunction due to noise, take the following actions:


- Position the input reference device and noise filter as close to the SERVOPACK as possible.
- Always install a surge absorber circuit in the relay, solenoid and magnetic contactor coils.
- The distance between a power line (such as a power supply line or motor cable) and a signal line must be at least 30 cm (12 in). Do not put the power and signal lines in the same duct or bundle them together.
- Do not share the power supply with an electric welder or electrical discharge machine. When the SER-VOPACK is placed near a high-frequency oscillator, install a noise filter on the input side of the power supply line.

Note: 1. Since SERVOPACK uses high-speed switching elements, signal lines may receive noise. To prevent this, always take the above actions.

2. For details of grounding and noise filters, refer to Section 3.8.2 Wiring for Noise Control.

Use a molded-case circuit breaker (MCCB) or fuse to protect the power supply line from high voltage.

- This SERVOPACK is directly connected to commercial power supply without a transformer. Always use an MCCB or fuse to protect the servo system from accidental high voltage.
- Select an appropriate MCCB or fuse according to the SERVOPACK capacity and the number of SERVO-PACKs to be used as shown below.

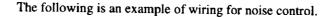
MCCB or Fuse for Each Power Capacity

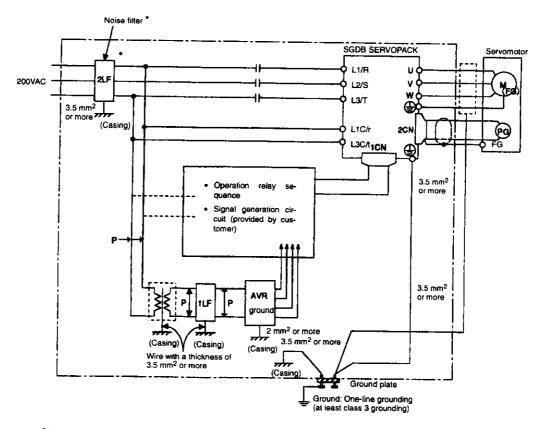
SERVOPACK Model	Power Supply Capacity per SERVOPACK*1 (kVA)	Power Supply Capacity per MCCB or Fuse*2 (A)
SGDB-2BAD	36.7	150
SGDB-3ZAD	50.1	200
SGDB-3GAD	61.8	225
SGDB-2BDD	36.7	100
SGDB-3ZDD	50.1	150
SGDB-3GDD	61.8	150
SGDB-4EDD	75.2	225
SGDB-5EDD	91.9	225

^{* 1.} Power capacity at rated load

Note: A fast-operating fuse cannot be used because the SERVOPACK power supply is a capacitor input type. A fast-operating fuse may blow out when the power is turned ON.

3.8.2 Wiring for Noise Control


Example of Wiring for Noise Control


This SERVOPACK uses high-speed switching elements in the main circuit. It may receive "switching noise" from these high-speed switching elements if wiring or grounding around the SERVOPACK is not appropriate. To prevent this, always wire and ground the SERVOPACK correctly.

This SERVOPACK has a built-in microprocessor (CPU). To protect the microprocessor from external noise, install a noise filter in place.

^{* 2.} Operating characteristics (25°C): 2 seconds or more for 200%, 0.01 second or more for 700%

3.8.2 Wiring for Noise Control

^{*} When using a noise filter, always observe the following wiring instructions:

- Note: 1. For a ground wire to be connected to the casing, use a thick wire with a thickness of at least 3.5 mm² (preferably, plain stitch cooper wire).
 - 2. For wires indicated by P‡, use twisted-pair cables whenever possible.

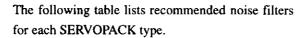
Correct Grounding

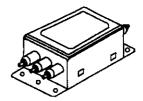
Always ground the motor frame.

Always connect servomotor frame terminal FG to the SERVOPACK ground terminal .

Be sure to ground the ground terminal .

If the servomotor is grounded via the machine, a switching noise current will flow from the SERVOPACK power unit through motor stray capacitance. The above grounding is required to prevent the adverse effects of switching noise.

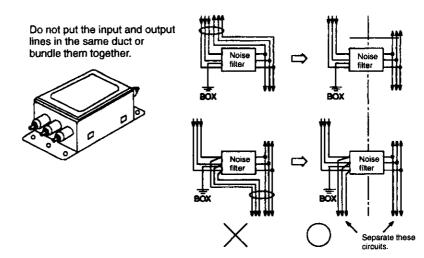

If the reference input line receives noise, do the following.


Ground the 0 V line (SG) of the reference input line. If the main circuit wiring for the motor is accommodated in a metal conduit, ground the conduit and its junction box. For all grounding, always use one-line grounding.

■ Noise Filter Installation

Use an inhibit type noise filter to prevent noise from the power supply line.

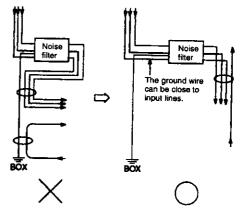
Install a noise filter on the power supply line for peripheral equipment as necessary.



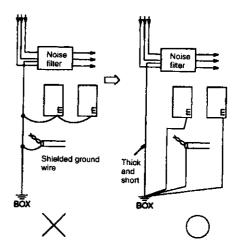
SERVOPACK Model		Noise Filter Connection	Recommended Noise Filter	
0.3 kW	SGDB-2BAD	(Correct)	FN258L-130-35	
0.5 kW	SGDB-3ZAD		FN258L-180-07	
0.7 kW	SGDB-3GAD		FN359P-250-99	
1.0 kW	SGDB-2BDD	-	FN258L-75-34	
1.5 kW	SGDB-3ZDD	(Incorrect)	FN258L-100-35	
2.0 kW	SGDB-3GDD	(miconect)	FN258L-130-35	
3.0 kW	SGDB-4EDD	☐ °Ţ~ް	FN258L-180-07	
4.4 kW	SGDB-5EDD	─ ↓ ↓	FN258L-180-07	

Note: These noise filters are manufactured by Tokin Corp. and available from Yaskawa. For noise filters, contact your nearest Yaskawa sales representatives.

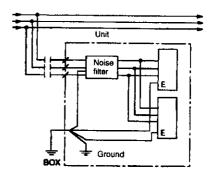
Always observe the following installation and wiring instructions. Incorrect use of a noise filter halves its benefits.


• Separate input lines from output lines.

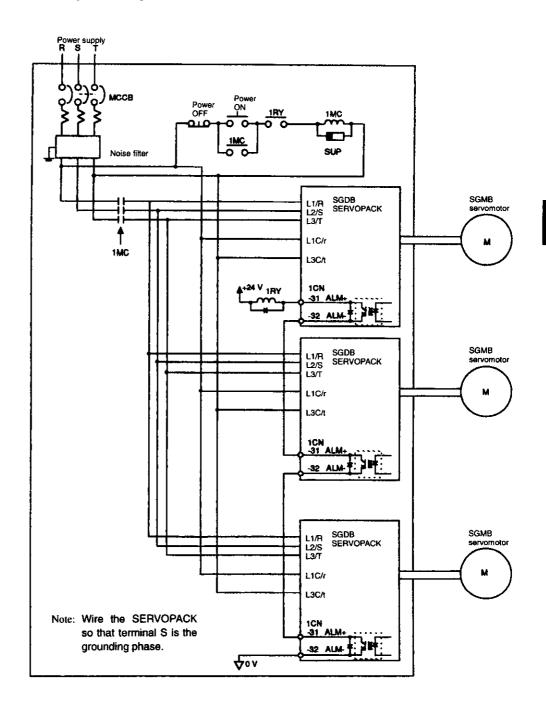
3.8.2 Wiring for Noise Control


• Separate the noise filter ground wire from the output lines.

Do not accommodate the noise filter ground wire, output lines and other signal lines in the same duct or bundle them together.


• Connect the noise filter ground wire directly to the ground plate.

Do not connect the noise filter ground wire to other ground wires.


When grounding a noise filter inside a Unit.

If a noise filter is located inside a Unit, connect the noise filter ground wire and the ground wires from other devices inside the Unit to the ground plate for the Unit first, then ground these wires.

3.8.3 Using More Than One Servo Drive

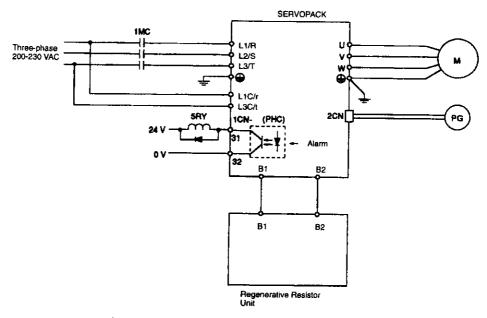
An example of wiring more than one servo drive is shown below.

Connect the alarm output (ALM) terminals for the three SERVOPACKs in series to enable alarm detection relay 1RY to operate. This is because ALM is a logical complement output signal, so the output transistor is turned OFF when the system enters an alarm state.

The output transistor is turned OFF when the ALM output signal invokes alarm state.

3.8.4 Using the Regenerative Resistor Units

Multiple servos can share a single MCCB or noise filter. Always select a MCCB or noise filter that has enough capacity for the total power capacity (load conditions) of those servos. For details, refer to page 3 -83.


3.8.4 Using the Regenerative Resistor Units

High-capacity SERVOPACKs have no built-in regenerative resistor. For such SERVOPACKs, connect an external Regenerative Resistor Unit.

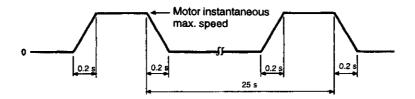
Connecting a Regenerative Resistor Unit

The standard connection diagram for a Regenerative Resistor Unit is shown below.

The following connection example is for a 200-V Regenerative Resistor Unit. For a 400-V Regenerative Resistor Unit, connect the B1 and B2 terminals in the same way.

Connecting a Regenerative Resistor Unit

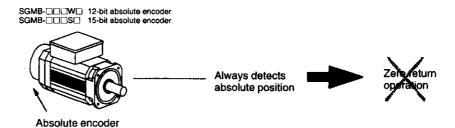
Regenerative Resistor Units


SERVOPACK Model	Regenerative Resistor Unit Model	Regenerative Resistance (Ω)	Capacity (W)
SGDB-2BAD	JUSP-RA08	2.4	2400
SGDB-3ZAD	JUSP-RA09	1.8	4800
SGDB-3GAD	JUSP-RA11	1.6	4800
SGDB-2BDD	JUSP-RA12	9	3600
SGDB-3ZDD	JUSP-RA13	6.7	3600
SGDB-3GDD	JUSP-RA14	5	4800
SGDB-4EDD	JUSP-RA15	4	6000
SGDB-5EDD	JUSP-RA16	3.75	7200

IMPORTANT

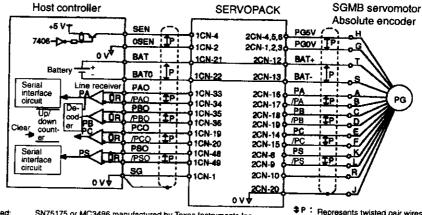
A Regenerative Resistor Unit becomes very hot under some regenerative operation conditions of the servo system. Therefore, provide a cooling mechanism for the Regenerative Resistor Unit, use heat resistant and incombustible cables, and route the cables so that they are not in contact with the unit.

The allowable dissipation of regenerative resistance is approximately 20% of the rated allowable dissipation of the resistor. If the regenerative power (average) exceeds the allowable limit of 20% when the servo system is operating in regenerative operation mode, select an additional regenerative resistor that has a greater rated allowable dissipation (W). Always take the servo system operation conditions into consideration when determining which Regenerative Resistor Unit to use.


Example of allowable motor duty conditions is shown below.

- Motor deceleration torque: Maximum torque
- Load inertia: Five times the motor rotor inertial
 Assuming that there is no mechanical loss.

3.8.5 Using an Absolute Encoder

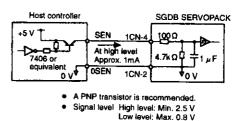

An absolute value detection system detects an absolute position of the machine even when the servo system is OFF. If such a system is to be formed in the host controller, use an SGMB servomotor with absolute encoder. Consequently, automatic operation can be performed without zero point return operation immediately after the power is turned ON.

3.8.5 Using an Absolute Encoder

The standard connection diagram for an absolute encoder mounted on a servomotor is shown below.

• Interface Circuit

Line Receiver Used: S Termination Resistor R: 2


SN75175 or MC3486 manufactured by Texas Instruments Inc. 220 to 470 W

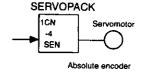
PS, /PS, PSO and /PSO are for 12-bit absolute encoders only.

SEN signal

- The SEN signal must be set at high level after at least three seconds after the power is turned ON.
- When the SEN signal is changed from low level to high level, +5 V is applied to the absolute encoder, and serial data and initial incremental pulses are transmitted.

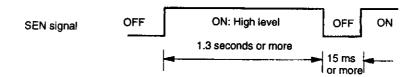
Electrical Specifications

• The motor is not turned ON until these operations are complete, regardless of the servo ON signal (/S-ON).


Memory Switch to Determine Whether to Use Input Signal SEN

Cn-01 Bit 1	Use of SEN Input Signal	For Speed/Torque Control and Position Control

This memory switch is used to determine whether to use input signal SEN (1CN-4).


This memory switch is available for absolute encoders only (not for incremental encoders).

Setting	Meaning
0	Uses SEN signal.
1	Does not use SEN signal. (The SGDB SERVOPACK always assumes that the SEN signal is at high level, regardless of the actual signal level.)

IMPORTANT

If the SEN signal is to be turned OFF, then ON again, it must remain at high level for at least 1.3 seconds before being turned OFF.

■ Memory Switch to 1 to Select Absolute Encoder

Cn-01 Bit E	Encoder Type Selection	Factory Setting: 0	For Speed/Torque Control and Position Control
		Setting: U	Position Control

Sets the encoder type according to the servomotor type to be used.

After changing the memory switch setting, turn the power OFF, then ON.

Motor Type Encoder Specifications	Encoder	
2	2 Incremental encoder: 8192 pulses per revolution	
6	Incremental encoder: 4096 pulses per revolution] ^U
W	Absolute encoder: 1024 pulses per revolution	
S	Absolute encoder: 8192 pulses per revolution	ı ı

Use the following parameter to set the number of pulses for the absolute encoder to be used:

Cn-11 PULSNO Number of Encoder Pulses	Unit: P/R	Setting Range: Number of Encoder Pulses	For Speed/Torque Control and Position Control
---------------------------------------	--------------	---	---

Sets the number of encoder pulses according to the servomotor type to be used.

After changing the memory switch setting, turn the power OFF, then ON.

Motor Type Encoder Specifications	Encoder	
2	Incremental encoder: 8192 pulses per revolution	8192
6	Incremental encoder: 4096 pulses per revolution	4096
W	Absolute encoder: 1024 pulses per revolution	1024
S	Absolute encoder: 8192 pulses per revolution	8192

IMPORTANT

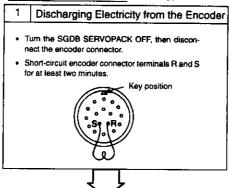
Incorrect settings of the above parameters may result in abnormal motor operation. To prevent this, always set the parameter correctly.

3.8.5 Using an Absolute Encoder

Using a Battery

Use the following battery to enable the absolute encoder to store position information even when the power is turned OFF. Load the battery in the host controller and connect it to SERVOPACK input terminals BAT and BATO.

Recommended battery:	 Connect the battery securely to prevent contact faults resulting from environmental changes or aging.
Lithium battery Toshiba Battery Model ER6V C3 3.6 V, 2000 mAH	 Battery voltage is not monitored inside the SERVO- PACK. Provide a battery voltage monitor circuit as necessary.
	Minimum voltage: 2.8 V


Setting up Absolute Encoder

Set up the absolute encoder in the following cases:

- When starting the machine for the first time
- When the absolute encoder is not connected to power supply or backup power supply (battery) for more than two days

The setup procedure is as follows:

15-bit absolute encoder (Motor type encoder specifications=S)

2 Turning the Power ON

- · Return the wiring to the normal state.
- Connect the battery, turn the SGDB SERVOPACK ON, and set the SEN signal at high level.
- It alarm "A.00" arises, repeat the same procedure from the beginning.
- If no problem has occurred, the setup procedure is complete.

12-bit absolute encoder (Motor type encoder specifications=W)

1 Turning SGDB SERVOPACK ON

- Wire the SGDB SERVOPACK, motor and encoder in the normal way.
- Connect the battery and turn the SGDB SERVO-PACK ON.

2 Turning the Encoder ON

- Set the SEN signal at high level.
- Keep the encoder turned ON for at least three minutes.
- . It does not matter even if alarm status arises.

3 Resetting Data

- Turn the SGDB SERVOPACK OFF, then disconnect the encoder connector.
- Short-circuit encoder connector terminals 13 and 14 for two seconds or more.
 (For SGM and SGMP servomotors)
- Short-circuit encoder connector terminals R and S for at least two seconds.
 (For SGMC_SGMD_and SGMS_

(For SGMG, SGMD, and SGMS servomotors)

4 Turning the Power ON

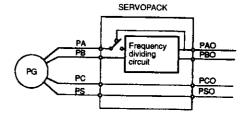
- Return the wiring to the original state.
 Turn the SGDB SERVOPACK ON and set the SEN
- Turn the SGDB SERVOPACK ON and set the SEN signal at high level.
- If alarm "A.00" arises, repeat the same procedure from the beginning.
- If no problem has occurred, the setup procedure is complete.

IMPORTANT

Setting up the encoder sets the revolution count inside the encoder to 0.

After setting up the encoder, always reset the machine home position. Operating the machine without the home position being reset does not only damage the machine but may also cause an accident resulting in injury or death.

3.8.5 Using an Absolute Encoder


Absolute Data Exchange Sequence

The SERVOPACK sends absolute data to the host controller when receiving output from an absolute encoder. This data exchange sequence is described below.

Use the following detailed information when designing a host controller.

Outline of Absolute Signal

The absolute encoder outputs PAO, PBO, PCO and PSO as shown on the right.

Signal Name	Status	Contents	
PAO	Initial state	Serial data Initial incremental pulse	· · · ·
	Normal state	Incremental pulse	
PBO	Initial state	Initial incremental pulse	
	Normal state	Incremental pulse	
PCO	Normal state	Home position pulse	
PSO	Normal state	Rotation count serial data (12-bit absolute encoder only)	

Contents of Absolute Data

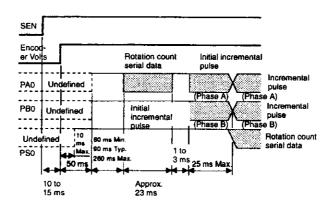
Serial Data: Indicates how many turns the motor shaft has made from the

reference position (position specified at setup).

Initial Incremental Pulse: Outputs pulses at the same pulse rate as when the motor shaft

rotates from the home position to the current position at the

maximum speed of 4,900 r/min.

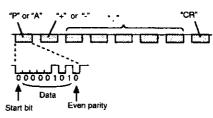

Absolute data P_M can be determined using the following formula.

 $P_E = M \times R + P_O$ $P_M = P_E - P_S$

PE	Current value read by encoder
M	Serial data (rotation count data)
Po	Number of initial incremental pulses (Normally, this is a negative value)
Ps	Number of initial incremental pulses read at setup (This is normally a negative value. This value is stored and managed at the host controller.)
Рм	Current value required for the customer system
R	Number of pulses per encoder revolution (pulse count after dividing, value of Cn-0A)

Absolute Data Transmitting Sequence

- 1. Set the SEN signal at high level.
- 2. After 100 ms, set the system to serial data reception-waiting-state. Clear the incremental pulse up/down counter to zero.
- 3. Receive eight bytes of serial data.
- **4.** The system enters a normal incremental operation state approximately 50 ms after the last serial data is received.

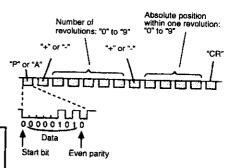


Detailed Specifications of Each Signal

Specifications of PAO Serial Data:

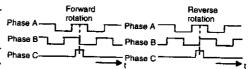
The number of revolutions is output in five digits.

Data transmission method	Start-stop synchronization (ASYNC)
Baud rate	9600
Start bit	1 bit
Stop bit	1 bit
Parity	Even number
Character code	ASCII 7-bit code
Data format	8 characters. As shown on the right.


- Data is P+0000 (CR) or P-0000 (CR) when the number of revolutions is zero.
- The maximum number of revolutions is ±99999. If this value is exceeded, it returns to 0000.

3.8.5 Using an Absolute Encoder

Specifications of PSO Serial Data:

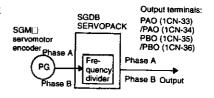

The number of revolutions and the absolute position within one revolution are always output in five and four digits, respectively. The transmission cycle is approximately 40 ms.

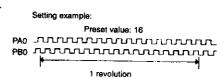
Data transmission method	Start-stop synchronization (ASYNC)
Baud rate	9600
Start bit	1 bit
Stop bit	1 bit
Parity	Even number
Character code	ASCII 7-bit code
Data format	13 characters. As shown on the right.

- Absolute position data within one revolution is a value before frequency dividing.
 (4,096 pulses per revolution)
- Absolute position data increases during forward rotation (standard setting). (Not valid in reverse rotation mode)
- Incremental Pulse and Home Position Pulse:

Initial incremental pulses which provide absolute data are first divided by the frequency divider inside the SER-VOPACK and then output in the same way as normal incremental pulses.

- Note that phase C is not divided so its pulse width is narrower than phase A.
- Use the following parameter to set the pulse dividing ratio.

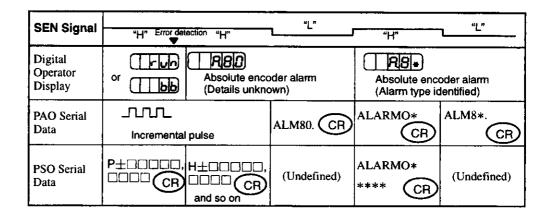

Cn-0A	PGRAT Dividing Ratio Setting	Unit: P/R	Setting Range: 16 to Number of Encoder Pulses	For Speed/Torque Control and Position Control
-------	------------------------------------	-----------	---	---


Set the number of output pulses for PG output signals (PAO, /PAO, PBO and /PBO).

Pulses from motor encoder (PG) are divided by the preset number of pulses before being output.

The number of output pulses per revolution is set in this parameter. Set this value according to the reference unit of the machine or controller to be used.

The setting range varies according to the encoder used.


Alarm Display

When a 12-bit absolute encoder is used, the following alarms are detected and displayed.

List of Alarms

Alarm Type	Meaning	Digital Operator Display	PAO Serial Data	PSO Serial Data
Backup Alarm	Indicates that backup voltage drop was detected. (This alarm helps maintain reliability of rotation count data.)		ALM81. CR	ALARMOA BACK CR
Battery Alarm	Indicates that backup voltage drop was detected. (This alarm warns of battery replacement and disconnection.)		ALM83. CB	ALARMOD BATT CR
Checksum Error	Indicates that an error was detected in memory data check.		ALM82. CR	ALARMOB CHEC CR
Overspeed	Indicates that the motor was running at a speed exceeding 400 r/min when the encoder was turned ON.		ALM85. CR	ALARMOP OVER CR
Absolute Error	Indicates that an error was detected in sensor check inside the encoder.		ALM84. CR	ALARMOH ABSO CR
Backup/Battery Combination Alarm			ALM81. CR	ALARMOE BACK (BATT) CR

The SEN signal can be used to output alarm information from PAO and PSO as serial data.

Absolute Encoder Home Position Error Detection

	v · · · · · · · · · · · · · · · · ·		
Cn-02 Bit 1	Absolute Encoder Home	Factory	For Speed/Torque Control and
CIPUZ BIL I	Position Error Detection	Setting: 0	Position Control

3.8.5 Using an Absolute Encoder

This memory switch is used to specify whether to use **home position error detection** (alarm A.80) when an absolute encoder is used.

Setting	Meaning
0	Detects a home position error.
1	Does not detect a home position error.

Normally, set this memory switch to "0".

This memory switch has no significance when an incremental encoder is used.

Home position error detection

This function detects an encoder count error resulting from noise. It checks the number of pulses per motor revolution, and outputs a home position error alarm if that number is incorrect.

If the absolute encoder detects an error, it inverts phase C and notifies the SERVOPACK of the error. In this case, this "home position error detection" function also works.

3.8.6 Connector Terminal Layouts

This section describes connector terminal layouts for SERVOPACKs, SGMB servomotors and Digital Operators.

SERVOPACK Connectors

1CN Terminal Layout

	 	T	۱,	sg	0V	<u> </u>	ı	T	26	/V-CMP (/COIN-)	Speed coinci- dence output		
2	SG	ov	<u> </u>	<u> </u>	Power supply	27	/TGON+	TGON output signal	\vdash				
4	SEN	SEN signal in-	3	PLI	for open col- lector refer- ence	29	/S-RDY+	Servo ready	28	/TGON-	TGON output signal		
		put	5	V-REF	Speed reference input		75-RD1+	output	30	/S-RDY-	Servo ready output		
6	SG	0V			Reference	31	ALM+	Servo alarm output			Servo alarm		
8	/PULS	Reference	7	PULS	pulse input	33	PAO	PG dividing	32	ALM-	output		
		pulse input	9	T-REF	Torque refer- ence input			phase A	34	/PAO	PG dividing output		
10	SG	0V	ļ . <u></u>		Cice taput	35	РВО	PG dividing output phase B			phase A		
			11	SIGN	Reference sign input	-		pitase is	36	/РВО	PG dividing output phase B		
12	/SIGN	Reference sign input	13	PL2	Power supply for open col-	37	ALOt	Alarm code output (open			Alarm code out-		
14	CLR Error counter	Error counter	13	PL2	lector refer- ence	39	ALO3	collector out- put)	38	ALO2	lector output)		
		tion uput	15	CLR	Error counter clear input	ļ			40	/S-ON	Servo ON in- put		
16	TQR-M	Torque monitor	<u> </u>			41	/P-CON	P control input	<u> </u>		Forward over-		
18	PL3	Power supply for open collec-	17	VTG-M	Speed monitor	43	N-OT	Reverse over-	42	P-OT	travel input		
		tor reference PG dividing	19	PCO	PG dividing output phase C			travel input	44	/ALM /RST	Alarm reset in- put		
20	/PCO	output phase C			,,	45	/P-CL	Forward exter- nal torque limit ON input			Reverse external		
22	BAT0	Battery (-)	21	BAT	BAT Battery (+)	47	+24V	External power	46	/N-CL	torque limit ON input		
	BAII!		23	+12V	Power supply for speed/ torque refer-	4′	IN	supply input	48	PSO	Phase S		
24	-12V	Power supply for speed/torque reference	for speed/torque	for speed/torque			ence	49	/PSO	Phase S Signal output			Signal output
j			25	/V-CMP (/COIN+)	Speed coinci- dence signal output				50	FG	Frame ground		

• SERVOPACK End Connector model: 10250-52A2JL (manufactured by 3M)

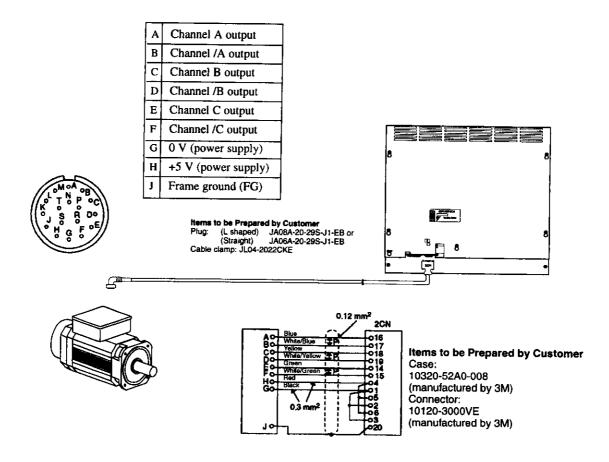
• Cable End Connector model: 10150-3000VE (manufactured by 3M)

Connector case model: 10350-52A0-008 (manufactured by 3M)

3.8.6 Connector Terminal Layouts

2CN Terminal Layout

	 -		$\lceil \rceil$	PG0V					Ī.,		T				
2	PG0V	PG power sup-	<u> </u>		PG power sup-			Battery (+) (for	111	J	}				
		ply t) V	3	ply 0 V		12	BAT +	absolute encod- er only)	13	BAT -	Battery (-) (for absolute encod-				
4	PG5V		<u> </u>				PC	PG input phase		BAI -	er only)				
1		PG power sup- ply +5 V		5	PG5V	PG power sup- ply +5 V	<u> </u>		С	15	/PC	PG input phase			
6	6 PG5V	1 ' '	F-7	F-7	F-9	1,2,2,			pry +3 v	16	PA	PG input phase			C
—		<u> </u>	7	DIR	Rotation direc-	<u> </u>			^			PG input phase			
8	PS	PG input phase S (for absolute			tion input	18	PB	PG input phase	17	/PA	A A				
		encoder only)	9	/PS	PG input phase S (for absolute	'°] "] '°	гв	В	19	/PB	PG input phase		
10					encoder only)	<u> </u>				,,,,	В				
						20	FG	Frame ground							

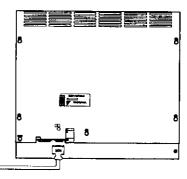

• SERVOPACK End Connector model: 10220-52A2JL (manufactured by 3M)

• Cable End Connector model: 10120-3000VE (manufactured by 3M)

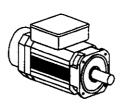
Connector case model: 10320-52A0-008 (manufactured by 3M)

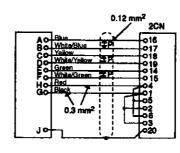
Connectors for Incremental Encoder

SGMB series

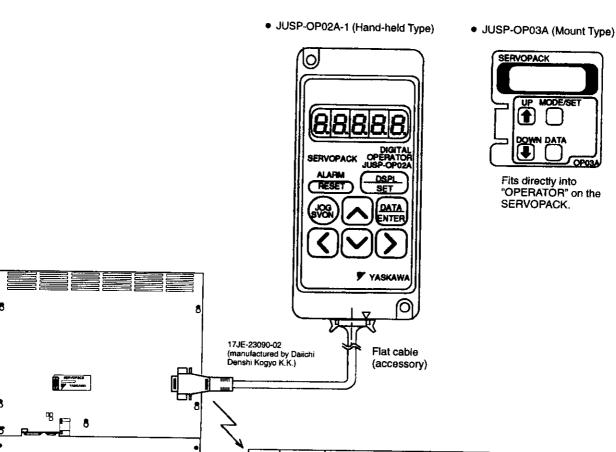


■ Connectors for Absolute Encoder


SGMB series


Α	Channel A output
В	Channel /A output
С	Channel B output
D	Channel /B output
Е	Channel Z output
F	Channel /Z output
G	0 V (power supply)
Н	+5 V (power supply)
1	Frame ground (FG)
K	Channel S output
L	Channel /S output
R	Reset
S	0 V (battery)
Т	3.6 V (battery)
-	

Rems to be Prepared by Customer
Plug: (L shaped) JA08A-20-29S-J1-EB or
(Straight) JA06A-20-29S-J1-EB
Cable clamp: JL04-2022CKE



Items to be Prepared by Customer Case: 10320-52A0-008 (manufactured by 3M) Connector: 10120-3000VE (manufactured by 3M)

Connectors for Digital Operator

Pin No.	Signal Name	Signal Circuit Name	Signal Direction
1	TXD	Transmit data (non-inversion side)	P ← S
2	/TXD	Transmit data (inversion side)	P←S
3	RXD	Receive data (non-inversion side)	$P \rightarrow S$
4	/RXD	Receive data (inversion side)	$P \rightarrow S$
5	ОРН		#
6	/RXD	Shorting pins 6 and 7 produces a termina	<u> </u>
7	RT	resistance of 220 Ω between RXD and /R	
8	5VPP		#
9	GND	Signal ground 0 V	

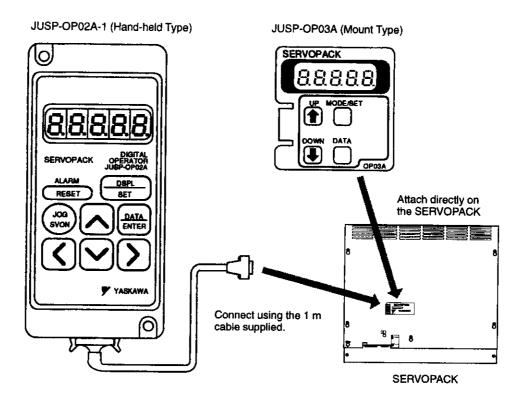
USING THE DIGITAL OPERATOR

This chapter describes the basic operation of the Digital Operator and the convenient features it offers.

All constant settings and motor operations are possible by simple, convenient, operation.

Operate the Digital Operator as you read through this chapter.

4.1	Basic Operations	4 - 2
	4.1.1 Connecting the Digital Operator	4 - 2
	4.1.2 Key Functions	4 - 2
	4.1.3 Resetting Servo Alarms	4 - 4
	4.1.4 Basic Functions and Mode Selection	4 - 5
	4.1.5 Operation in Status Display Mode	4 - 6
	4.1.6 Operation in Parameter Setting Mode	4 - 9
	4.1.7 Operation in Monitor Mode	4 - 14
4.2	Using the Functions	4 - 17
	4.2.1 Operation in Alarm Trace-back Mode	4 - 17
	4.2.2 Operation Using the Digital Operator	4 - 19
	4.2.3 Autotuning	4 - 22
	4.2.4 Reference Offset Automatic Adjustment	4 - 28
	4.2.5 Reference Offset Manual Adjustment Mode	4 - 30
	4.2.6 Clearing Alarm Trace-back Data	4 - 33
	4.2.7 Checking the Software Version	4 - 35
	4.2.8 Current Detection Offset Manual Adjustment Mode	4 - 35

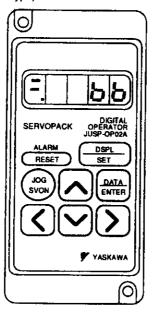

4.1 Basic Operations

This section describes the basic operations using the Digital Operator.

4.1.1 Connecting the Digital Operator

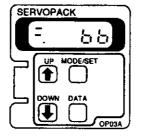
The Digital Operator is available as two models: JUSP-OP02A-1 (Hand-held Type) and JUSP-OP03A (Mount Type).

Each model is connected to the SERVOPACK as shown below.


 The Digital Operator connector can be connected or disconnected while the SERVOPACK power is ON.

4.1.2 Key Functions

The Digital Operator can be used to set parameters, operation references, and to show display status.

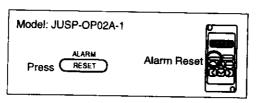

This section describes the Digital Operator key names and their functions available from the initial displays.

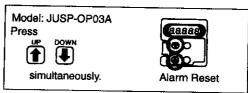
Digital Operator (Hand-held Type)

	Na	me	Function
ALARM RESET	RESET Key		Press this key to reset the servo alarm.
DSPL SET	DSPL/SET Key		Press this key to select the status display mode, setting mode, monitor mode, or alarm trace-back mode.
			This key is used for data selection when set to setting mode.
DATA ENTER	DATA/ENTER Key		Press this key to set parameters or to display set values of parameters.
\langle	Value Change/ JOG Key	Up Cursor Key	Press this key to increase the set value. This key is used as a forward start key in jog operation.
		Down Cursor Key	Press this key to decrease the set value. This key is used as a reverse start key in jog operation.
\triangleright	Digit Select Key	Right Cursor Key	Press this key to select the digit to be changed. The selected digit will flash.
		Left Cursor	Press the Right Cursor Key to shift to the next digit on the right.
		Key	Press the Left Cursor Key to shift to the next digit on the left.
JOG SVON	SVON Key		Press this key to perform the jog operation with the Digital Operator.

Digital Operator (Mount Type)

	Name	Function
UP	UP Key	Press these keys to set user constants or display the set values of parameters.
		Press the UP Key to increase the set value.
DOWN	DOWN Key	Press the DOWN Key to decrease the set value.
		Press the UP and DOWN Keys together to reset the servo alarm.
MODE/SET	MODE/SET Key	Press this key to select the status display mode, setting mode, monitor mode, or alarm trace-back mode.
DATA	DATA Key	Press this key to set parameter values or to display the values of parameters.
		This key is used for data selection in setting mode.

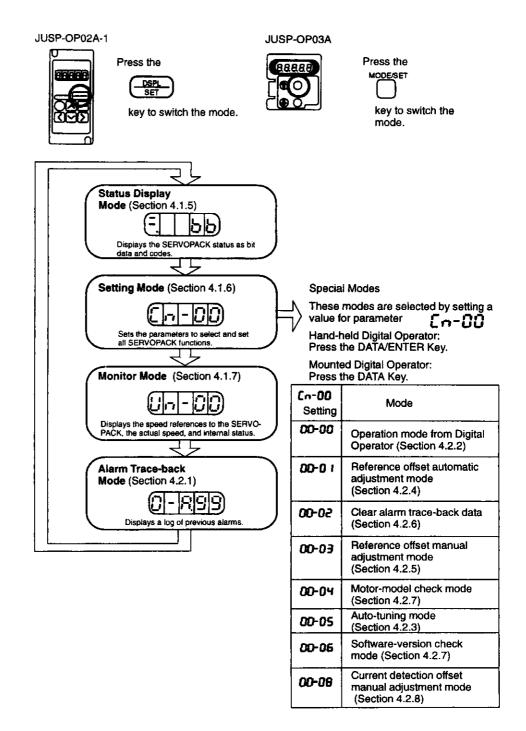

4.1.3 Resetting Servo Alarms


4.1.3 Resetting Servo Alarms

Servo alarms can be reset using the Digital Operator. Use either of the following methods, according to the type of Digital Operator being used.

Servo alarms can also be reset by the 1CN-44, /ALMRST input signal. Refer to Section 3.7.1 Using Servo Alarm Output and Alarm Code Output for details.

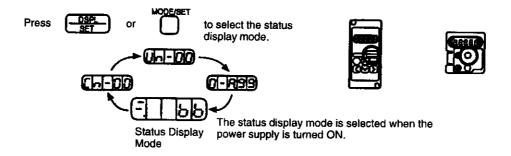
The servo alarm need not be reset if the control power supply is turned OFF.


After an alarm occurs, remove the cause of the alarm before resetting it. Refer to Section 6.2 Troubleshooting to determine and remedy the cause of an alarm.

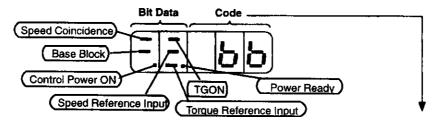
4.1.4 Basic Functions and Mode Selection

Digital Operator operation allows status display, parameter setting, operating reference, and auto-tuning operations.

Basic Mode Selection

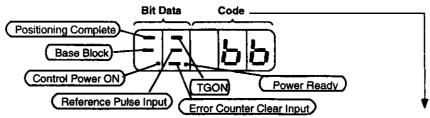

The four basic modes are listed below. Each time the mode key is pressed, the next mode in the sequence is selected.

4.1.5 Operation in Status Display Mode


The status display mode displays the SERVOPACK status as bit data and codes.

Selecting Status Display Mode

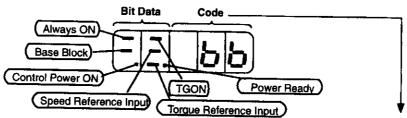
Keys to the status display are shown below.


For Speed Control

Code	Status
	Base block
	Servo OFF (motor power OFF)
	Run
	Servo ON (motor power ON)
احاتاها	Forward Rotation Prohibited (P-OT)
	1CN-42 (P-OT) OFF. See Cn-01 Bit 2 (page 3 -7).
	Reverse Rotation Prohibited (N-OT)
<u> </u>	1CN-43 (N-OT) OFF. See Cn-01 Bit 3 (page 3 -7).
	Alarm Status
	Displays the alarm number. See the table of alarms on page 4 - 18.

Bit Data	Description
Control Power ON	Lit when SERVOPACK control power ON. Not lit when SERVOPACK control power OFF.
Base Block	Lit for base block. Not lit at servo ON.
Speed Coincidence	Lit if motor speed reaches speed reference. Otherwise, not lit.
TGON	Lit if motor speed exceeds preset value. Not lit if motor speed is below preset value. Preset value: Set in Cn-0B (20 r/min is factory setting)
Speed Reference Input	Lit if input speed reference exceeds preset value. Not lit if input speed reference is below preset value. Specified value: Set in Cn-0B (20 r/min is factory setting)
Torque Reference Input	Lit if input torque reference exceeds preset value. Not lit if input torque reference is below preset value. Preset value: Set in Cn-0B (10% rated torque is standard setting) (Used for torque feed-forward or current restriction)
Power Ready	Lit when main power supply circuit is normal.
	Not lit when power is OFF or main power supply circuit is faulty.

For Position Control



Code	Status
55	Base block Servo OFF
	Run Servo ON
P0E	Forward Rotation Prohibited 1CN-42 (P-OT) OFF. See Cn-01 Bit 2 (page 3 -7).
hob	Reverse Rotation Prohibited 1CN-43 (N-OT) OFF. See Cn-01 Bit 3 (page 3 -7).
800	Alarm Status Displays the alarm number. See the table of alarms on page 4-18.
802	
}	

4.1.5 Operation in Status Display Mode

Bit Data	Description
Control Power ON	Lit when SERVOPACK control power ON. Not lit when SERVOPACK control power OFF.
Base Block	Lit for base block. Not lit at servo ON.
Positioning Complete	Lit if error between position reference and actual motor position is below preset value. Not lit if error between position reference and actual motor position exceeds preset value. Preset value: Set in Cn-1B (1 pulse is standard setting)
TGON	Lit if motor speed exceeds preset value. Not lit if motor speed is below preset value. Preset value: Set in Cn-0B (20 r/min is standard setting)
Reference Pulse Input	Lit if reference pulse is input Not lit if no reference pulse is input.
Error Counter Clear Input	Lit when error counter clear signal is input. Not lit when error counter clear signal is not input.
Power Ready	Lit when main power supply circuit is normal.
	Not lit when power is OFF or main power supply circuit is faulty.

For Torque Control

Code	Status
	Base block
	Servo OFF (motor power OFF)
	Run
الااتاتا	Servo ON (motor power ON)
	Forward Rotation Prohibited (P-OT)
	1CN-42 (P-OT) OFF. See Cn-01 Bit 2 (page 3 -7).
	Reverse Rotation Prohibited (N-OT)
	1CN-43 (N-OT) OFF. See Cn-01 Bit 3 (page 3 -7).
	Alarm Status Displays the alarm number. See the table of alarms on page 4 -18.
i delet	1 years and the table of alarms on page 4-16.
800	
<u> </u>	
)	

Bit Data	Description
Control Power ON	Lit when SERVOPACK control power ON. Not lit when SERVOPACK control power OFF.
Base Block	Lit for base block. Not lit at servo ON.
Speed Coincidence	Lit if motor speed reaches speed reference. Otherwise, not lit.
TGON	Lit if motor speed exceeds preset value. Not lit if motor speed is below preset value. Preset value: Set in Cn-0B (20 r/min is factory setting)
Speed Reference Input	Lit if input speed reference exceeds preset value. Not lit if input speed reference is below preset value. Preset value: Set in Cn-0B (20 r/min is factory setting) (Used as speed limit)
Torque Reference Input	Lit if input torque reference exceeds preset value. Not lit if input torque reference is below preset value. Preset value: Set in Cn-0B (10% rated torque is standard setting)
Power Ready	Lit when main power supply circuit is normal.
	Not lit when power is OFF or main power supply circuit is faulty.

4.1.6 Operation in Parameter Setting Mode

Two types of parameter are used:

- Constant Settings (Cn-03 to Cn-2D)
- Memory Switches (Cn-01, Cn-02)

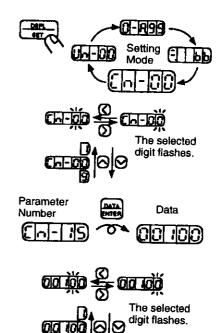
The setting method is different for each type.

The SERVOPACK offers a large number of functions, which are selected and adjusted by the parameter settings.

The constant settings (Cn-03 to Cn-2D) allow setting of a constant within a fixed range.

The memory switches (Cn-01, Cn-02) allow the required functions to be selected.

Refer to Appendix D List of Parameters.


■ Using the Setting Mode for Constant Settings (Cn-03 to Cn-2D)

The constant settings (Cn-03 to Cn-23) allow setting of a constant. Check the permitted range of the constant in *Appendix D List of Parameters*, before changing the data. The example below shows how to change user setting Cn-15 from 100 to 85.

JUSP-OP02A-1

For JUSP-OP02A-1

1. Press OBST to select the parameter setting mode.

Parameter Number The stored data flashes.

2. Select the parameter number to set.

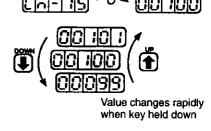
Press the () and () keys to select the digit.

Press the and keys to change the value.

- 3. Press ENTEN to display the current data for the parameter selected at step 2.
- 4. Set the required data.

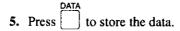
Press the () and () keys to select the digit.

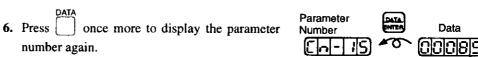
Press the and keys to change the value.


- 5. Press (DATA) to store the data.
- 6. Press once more to display the parameter number again.
- 7. Repeat steps 2 to 6 as often as required.

JUSP-OP03A

For JUSP-OP03A


- 1. Press to select the parameter setting mode.
- 2. Press the and keys to select the parameter number to set.
- 3. Press to display the current data for the parameter selected at step 2.
- 4. Press the and keys to change the data to the required value.



The stored data flashes.

Parameter

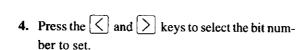
Number

- 7. Repeat steps 2 to 6 as often as required.
 - Refer to Appendix D List of Parameters.

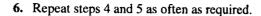
4.1.6 Operation in Parameter Setting Mode

Using the Setting Mode for Memory Switches (Cn-01, Cn-02)

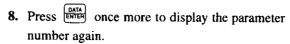
Turn the bits of the memory switches ON and OFF to select the functions required. The example below shows how to turn ON Bit 4 of memory switch Cn-01.

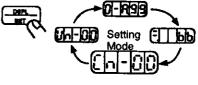

JUSP-OP02A-1

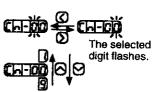
For JUSP-OP02A-1

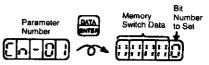

- to select the parameter setting 1. Press mode.
- 2. Select the parameter number to set. Press the \(\sum \) and \(\sum \) keys to select the digit.

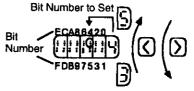
Press the and keys to change the value.



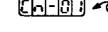





7. Press ENTER to store the data.



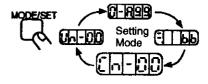
• Refer to Appendix D List of Parameters.

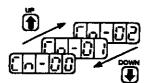


The stored data flashes.

Turning Bits ON and OFF

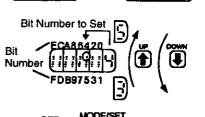
Memory switches use bits, not numbers, to select functions. Sixteen bits are available (0 to 9 and A to F). Select the required functions by turning the appropriate bit ON (function ON) or OFF (function OFF).


: = OFF i = ON


JUSP-OP03A

For JUSP-OP03A

1. Press to select the parameter setting mode.



2. Press the and keys to select the parameter number to set.

Memory Switch Data

- 3. Press to display the current data for the memory switch selected at step 2.
- 4. Press the and keys to select the bit number to set.



- 5. Press to set the memory switch data ON or OFF for the bit number.
- 6. Repeat steps 4 and 5 as often as required.

8. Press once more to display the parameter number again.

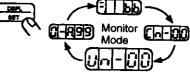
• Refer to Appendix D List of Parameters.

4.1.7 Operation in Monitor Mode

4.1.7 Operation in Monitor Mode

The monitor mode allows the reference values input into the SERVOPACK, I/O signal status, and SERVOPACK internal status to be monitored.

The monitor mode can be set during motor operation.


Using the Monitor Mode

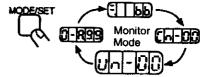
The example below shows how to display 1500, the contents of monitor number Un-00.

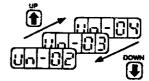
For JUSP-OP02A-1

1. Press SET to select the monitor mode.

- 2. Press the and keys to select the monitor number to display.
- (Ja-03) (Ja-03) (Ja-03)
- 3. Press DATA to display the data for the monitor number selected at step 2.
- Monitor Number Data

 Un 00 O ISO0
- 4. Press ENTER once more to display the monitor number again.




JUSP-OP03A

For JUSP-OP03A

1. Press to select the monitor mode.

2. Press the and keys to select the monitor number to display.

3. Press to display the data for the monitor number selected at step 2.

4. Press once more to display the monitor number again.

Monitor Mode Display

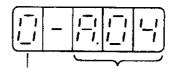
Keys to Monitor Mode Display are shown below.

Monitor Number	Monitor Display	
Un-00	Actual motor speed Units: r/min.	1
Un-0 !	Input speed reference Units: r/min.	
ეს-05	Internal torque reference Units: % (with respect to rated torque)	
<u> </u>	Number of pulses from motor U-phase edge Units: pulses	
Un-84	Electrical angle Units: deg	Internal Status Bit Display
Un=05	Internal status bit display	6P0P6P690P
<i>სი-0</i> 5	Internal status bit display	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>
Un-07	Input reference pulse speed display Units: r/min.	TISTISTIST
Un-08	Positional error Units: x1 reference unit (Cn-02 Bit E = 0) x100 reference unit (Cn-02 Bit E = 1)	♣ ⊕4040¶©¶0%
Un-09	Reference pulse counter reading Units: reference units A value between 0 to 65535 inclusive is displayed.	•

Monitor No	Bit No	Description		Related I/O Signal, Parameter
Un-05	1	Servo alarm		1CN-31 (ALM)
	2	Dynamic brake ON	•	
	3	Reverse rotation mo	ode	Cn-02 Bit 0, 2CN-7 (DIR)
	4	During motor rotati	on	
	5	Speed coincidence complete	or positioning	
	6	Mode switch ON		
	7	During forward current limit	Or contact input speed control	1CN-45 (/P-CL)
	8	During reverse current limit	1	1CN-46 (/N-CL)
	9	Motor power ON		,
	10	Phase A		2CN-16(PA), 2CN-17 (/PA)
11		Phase B		2CN-18(PB), 2CN-19 (/PB)
	12	Phase C		2CN-14(PC), 2CN-15 (/PC)
	13	Phase U		
	14	Phase V		
	15	Phase W	•	
	16 Servo ON			1CN-40 (/S-ON)
	17	P operation input		1CN-41 (/P-CON)
	18	Forward overtravel	input	1CN-42 (P-OT), Cn-01 Bit 2
	19	Reverse overtravel	input	1CN-43 (N-OT), Cn-01 Bit 3
	20 SEN signal input			1CN-4 (SEN), Cn-01 Bit 1

4.1.7 Operation in Monitor Mode

Monitor No	Bit No	Description	Related I/O Signal, Parameter
Un-06	1	Input reference pulse	1CN-7 (PLUS), 1CN-8 (/PULS)
	2	Input pulse sign	1CN-11 (SIGN), 1CN-12 (/SIGN)
	3	Error counter clear input	1CN-15 (CLR), 1CN-14 (/CLR)
	4	Current limit	(0.5)
	5	Brake interlock output	
	6	Overload warning	
	7	Main power supply ON	
[8	Servo ready	
	9	Not used	
į	to 20		


4

4.2 Using the Functions

This section describes how to use the basic operations described in section 1 to operate and adjust the motor.

4.2.1 Operation in Alarm Trace-back Mode

The alarm trace-back mode displays up to ten alarms which occurred previously. By allowing confirmation of what alarm occurred when, it is a useful aid to speed up troubleshooting.

Alarm Sequence Number The higher the number, the older the alarm data Alarm Code

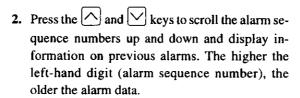
See the table of alarms on page 4 -18.

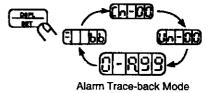
The alarm trace-back data is not cleared on alarm reset or when the SERVOPACK power is turned OFF. This does not adversely affect operation.

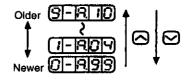
The data is cleared using the special mode: Clear alarm trace-back data.

Refer to Section 4.2.6 Clearing Alarm Trace-back Data for details.

Using the Alarm Trace-back Mode


Follow the procedure below to determine which alarms occurred previously.



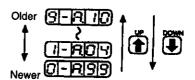

JUSP-OP02A-1

For JUSP-OP02A-1

1. Press been to select the alarm trace-back mode.

4.2.1 Operation in Alarm Trace-back Mode

)
[@ O	٦
Ċ		


JUSP-OP03A

For JUSP-OP03A

1.	Press	MODE/SET	to	select	the	alarm	trace-back
	mode.						

MODE/SET		
الرطرة		071-J00
•	^ _01-1	N919-/
	Alarm Trac	e-back Mode

2. Press the and keys to scroll the alarm sequence numbers up and down and display information on previous alarms. The higher the left-hand digit (alarm sequence number), the older the alarm data.

Alarm Display

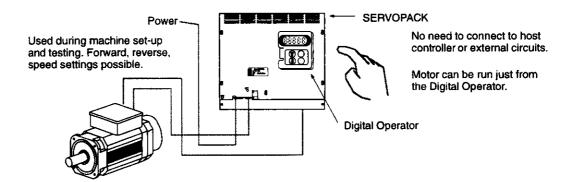
The table below lists the alarms displayed in the alarm trace-back mode.

Displayed Alarm Code	Description
800	Absolute data error
802	Parameter breakdown
884	Parameter setting error
R 10	Overcurrent
8.30	Regenerative error
83 :	Position error pulse overflow
848	Main circuit voltage error detection
RS /	Overspeed
871	Overload(Instantaneous)
892	Overload(Continuous)
880	Absolute encoder error
8.8 1	Absolute encoder back-up error
882	Absolute encoder checksum error
883	Absolute encoder battery error
884	Absolute encoder data error
885	Absolute encoder overspeed
<u> </u>	Heat sink overheated
R5 1	Reference input read error
801	Servo overrun detected *

Displayed Alarm Code	Description
8.0.2	Encoder output phase error
RC3	Encoder A-, B-phase disconnection
REH	Encoder C-phase disconnection
RF:	Power line open phase
883	Power loss error. (Detected when turning ON the power during the power holding period.)
AF Y	Main circuit contactor error.
899	Not an alarm.

^{*} This function prevents overrun.

The following are operator-related alarms which are not recorded by alarm trace-back.


EPF88	Digital Operator transmission error 1
CPFO:	Digital Operator transmission error 2

• Refer to the troubleshooting procedures when an alarm occurs, described in Section 6.2 Troubleshooting.

4.2.2 Operation Using the Digital Operator

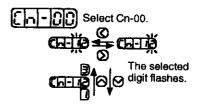
Simple Motor Check

Operation from the Digital Operator allows the SERVOPACK to run the motor. This allows rapid checking of basic operations during machine set-up and testing, without the trouble of connecting a host controller.

4.2.2 Operation Using the Digital Operator

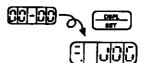
Use the following procedure to operate the motor from the Digital Operator.

JUSP-OP02A-1

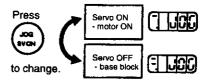

For JUSP-OP02A-1

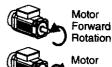
- 1. Press oser to select the parameter setting mode.
- Select the parameter number Cn-00. (Parameter Cn-00 is selected when the power is turned ON.)

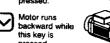
Press the () and () keys to select the digit.


Press the and keys to change the value.

- 3. Press ENTER to display the current data for the parameter Cn-00.
- 4. Press the and keys to change the data to 00.(This parameter is set to 00 when the power is turned ON.)
- 5. Press est to set the Digital Operator in operation mode. Operation is now possible under Digital Operator control.
- 6. Press Jog to set the servo ON status (motor power turned ON).
- 7. Press the \bigcirc and \bigcirc keys to operate the motor.

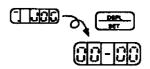


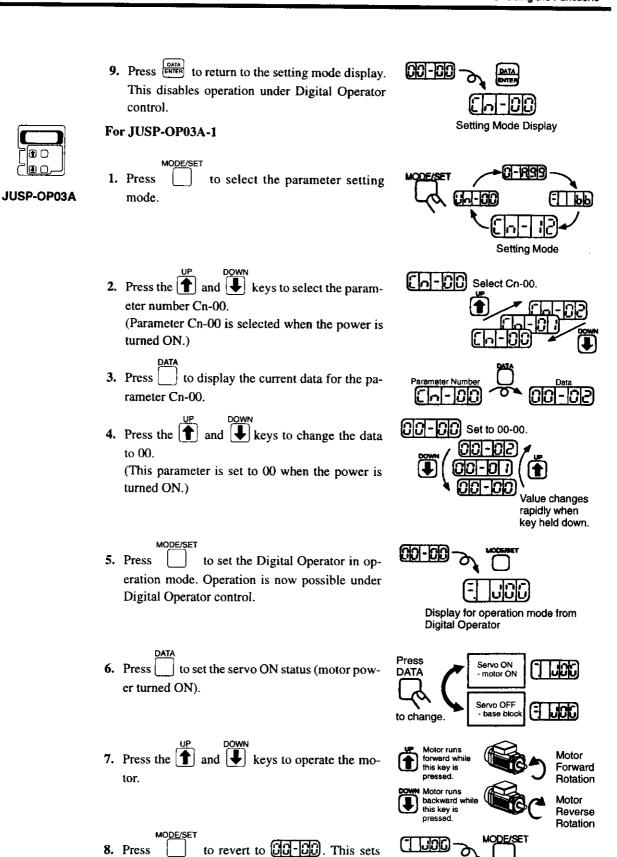




Display for operation mode from Digital Operator

Motor runs forward wh this key is

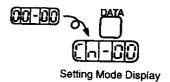




8. Press set to revert to CO-CO. This sets the servo OFF status (motor power turned OFF).

(Alternatively, press SVON) to set the servo OFF status.)

to set the servo OFF


the servo OFF status (motor power turned OFF).

(Alternatively, press

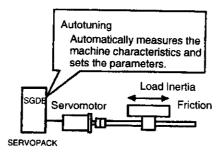
status.)

4.2.3 Autotuning

Press to return to the setting mode display.
 This disables operation under Digital Operator control.

The motor speed for operation under Digital Operator control can be changed with a parameter:

Parameter: Cn-10 (JOGSPD), Units: r/min., Standard setting: 500


For details about setting the motor speed, refer to Section 4.1.6 Operation in Parameter Setting Mode and Appendix D List of Parameters.

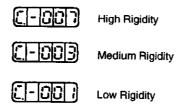
4.2.3 Autotuning

The SERVOPACK contains a built-in autotuning function to automatically measure the machine characteristics and set the parameters.

Servo drives normally require tuning to match the machine configuration and rigidity. This tuning requires a great deal of experience and is difficult for a person unfamiliar with the tuning procedure.

However, autotuning allows even totally inexperienced people to easily complete the tuning.

Precautions Relating to Autotuning


Speed Setting During Autotuning

The motor speed during autotuning is set by parameter Cn-10. Set to 500 r/min., which is the factory setting. Autotuning may be unsuccessful if this value is set too low.

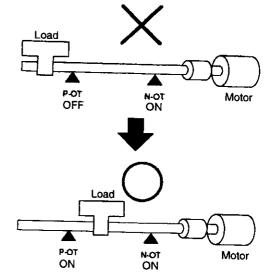
The motor runs intermittently while the or (or or or lown) key is held down. The motor does not rotate continuously.

Machine Rigidity Selection

Select the machine rigidity as described below. If the actual rigidity is unknown, select medium rigidity.

• If the Machine Resonates
At servo ON when the SVON (or) key is pressed or when the motor is operated by pressing
the or (or or) key, machine resonance indicates an inappropriate machine ri-
gidity setting.
Follow the procedure below to correct the machine rigidity setting, and run autotuning once
more.
1. Press the or or leave to cancel autotuning.
2. Press the once more to enter the machine rigidity setting mode. Reduce the setting by one.
If Autotuning Does Not End
Failure of autotuning to end [] [], is caused by an inappropriate machine rigidity setting. Follow the procedure below to correct the machine rigidity setting, and run autotuning once more.
1. Press the OBPL (or) key to cancel autotuning.
2. Press the (or) key once more to enter the machine rigidity setting mode. Increase the setting by one.
Autotuning may not end for machines with large play or extremely low rigidity.

In these cases, use conventional manual adjustment.


4.2.3 Autotuning

Input Signals

 The P-OT signal, N-OT signal and SEN signal (absolute encoder only) are enabled during autotuning. Input the P-OT signal, N-OT signal and SEN signal (absolute encoder only) during autotuning.

To conduct autotuning without inputting these signals, set parameter Cn-01 Bits 1, 2, and 3 to 1.

 Autotuning is not possible during overtravel (P-OT or N-OT signal OFF).

 Conduct autotuning when no overtravel has occurred (both P-OT and N-OT signal ON).

- Perform autotuning with the P-CON signal turned OFF.
- When using the mode switch function, perform one of the following before performing autotuning.

Refer to 3.6.6 Using the Mode Switch for details on the mode switch function.

- Disable the mode switch function.
- Set the mode switch operating level to a high value.
- If using the S-ON signal to set the servo ON status, display [] EUn before turning ON the S-ON signal.
- Confirm that the machine can be operated, and then install the motor in the machine and perform autotuning.
- Confirm that the P-CON signal is OFF (indicating PI control) and then perform autotuning.
- Set the speed control mode to PI control when performing autotuning.

The mode switch function will automatically switch control from PI to P control when the specified operating level is reached even if the P-CON signal is OFF. When using the mode switch function, perform one of the following before performing autotuning.

- Set bit B of parameter Cn-01 to 1 to disable the mode switch.
- Set the mode switch operating level for switching from PI to P control to a high enough level so that control will not switch to P control.

Set the operating level as shown in the following table. The operating level is selected with bits C and D of parameter Cn-01.

Operating Level	Parameter Setting
Torque Reference	Set Cn-0C to the maximum torque.
Speed Reference	Set Cn-0D to a value larger than the setting of Cn-10.
Acceleration	Set Cn-0E to the maximum value of 3,000.
Error Pulses	Set Cn-0F to the maximum value of 10,000.

Parameters Automatically Settable with Autotuning

Cn-04	Speed loop gain
Cn-05	Speed loop integration time constant
Cn-1A	Position loop gain

Once autotuning has been completed, the autotuning procedure can be omitted for subsequent machines, providing the machine specifications remain unchanged.

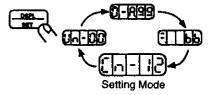
It is sufficient to directly set the parameters for subsequent machines.

The machine rigidity can be selected from one of seven levels.

Conduct autotuning with the motor attached to the machine.

Make sure that the machine is ready for operation and take sufficient safety precautions when operating the machine.

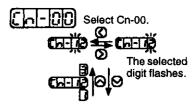
■ Using Autotuning


Follow the procedure below to run autotuning.

For J

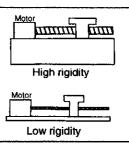
JUSP-OP02A-1

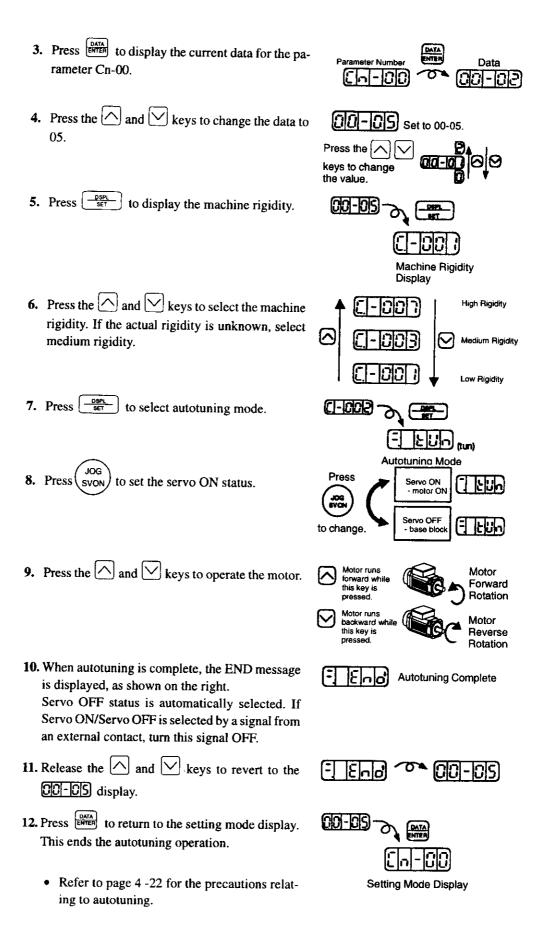
For JUSP-OP02A-1


1. Press OBPL ser to select the parameter setting mode.

 Select the parameter number Cn-00.
 (Parameter Cn-00 is selected when the power is turned ON.)

Press the and keys to select the digit.

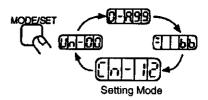

Press the and keys to change the value.



◆ Machine Rigidity

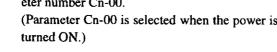
The machine rigidity is one of the machine characteristics related to servo control. Set the servo to high response for a machine, such as a machine tool, with high rigidity, and to low response for a machine, such as a robot, with low rigidity.

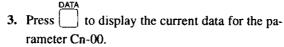
4.2.3 Autotuning



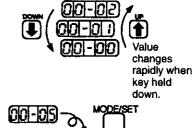
JUSP-OP03A

For JUSP-OP03A

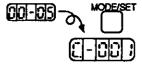

1. Press to select the parameter setting mode.

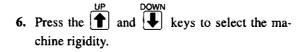


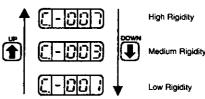
Select Cn-00.

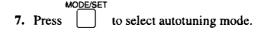

(C) - (C) Set to 00-05

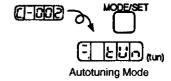
2. Press the and keys to select the parameter number Cn-00. (Parameter Cn-00 is selected when the power is

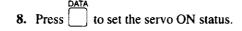


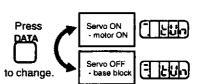






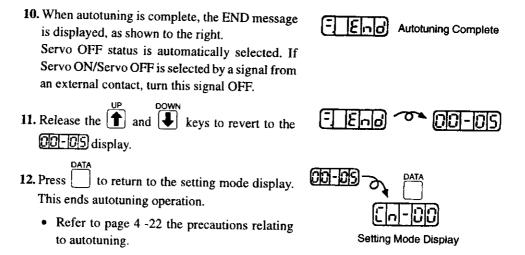






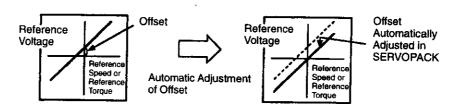
Machine Rigidity Display

9. Press the nand keys to operate the motor.



Motor Forward Rotation

4.2.4 Reference Offset Automatic Adjustment


4.2.4 Reference Offset Automatic Adjustment

The motor may rotate slowly when the reference voltage is intended to be 0 V.

This occurs when the host controller or external circuit has a small offset (measured in mV) in the reference voltage.

The reference offset automatic adjustment mode automatically measures the offset and adjusts the reference voltage. It adjusts both speed and torque references.

The following diagram illustrates automatic adjustment of an offset in the reference voltage from the host controller or external circuit.

After completion of offset automatic adjustment, the amount of offset is stored in the SERVO-PACK.

The amount of offset can be checked in the speed reference offset manual adjustment mode. Refer to Section 4.2.5 Reference Offset Manual Adjustment Mode for details.

The reference offset automatic adjustment mode cannot be used where a position loop is formed with the host controller and the error pulses are zeroed when servo lock is stopped.

In this case, use the speed reference offset manual adjustment mode. Refer to Section 4.2.5 Reference Offset Manual Adjustment Mode for details.

Zero-clamp speed control is available to force the motor to stop during zero speed reference. Refer to Section 3.4.3 Using Zero-Clamp for details.

Using the Reference Offset Automatic Adjustment Mode

Follow the procedure below to automatically adjust the reference offset.

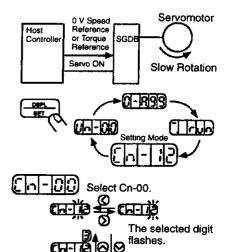
JUSP-OP02A-1

For JUSP-OP02A-1

- 1. Input the (intended) 0 V reference voltage from the host controller or external circuit.
- 2. Turn ON the servo ON (1CN-40, /S-ON) signal. The motor is set to operating mode.
- 3. Press DBPL set to select the parameter setting mode.
- Select the parameter number Cn-00.
 (Parameter Cn-00 is selected when the power is turned ON.)

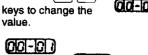
Press the \subseteq and \supseteq keys to select the digit.

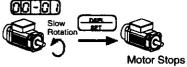
Press the and keys to change the value.

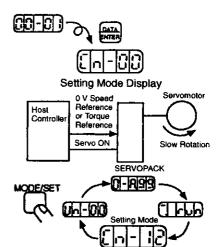

- 5. Press ENTEN to display the current data for the parameter Cn-00.
- 6. Press the \(\sum \) and \(\sum \) keys to change the data to 01.
- 7. Press (________ to automatically adjust the reference offset. The motor rotation stops.
- 8. Press ENTEN to return to the setting mode display.

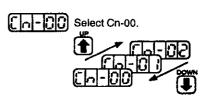
 This ends reference offset automatic adjustment.

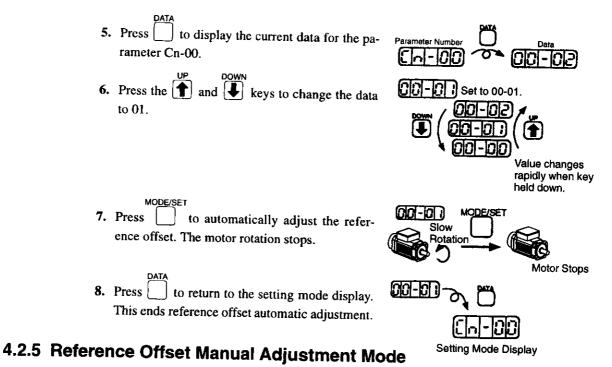
For JUSP-OP03A


- 1. Input the (intended) 0V reference voltage from the host controller or external circuit.
- 2. Turn ON the servo ON (1CN-40, /S-ON) signal. The motor is set to operating mode.
- 3. Press to select the parameter setting mode.
- 4. Press the and keys to select the parameter number Cn-00.


 (Parameter Cn-00 is selected when the power is turned ON.)

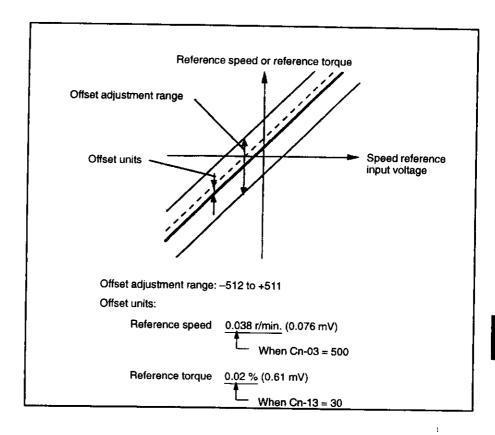






JUSP-OP03A

4.2.5 Reference Offset Manual Adjustment Mode


Speed reference offset manual adjustment is very convenient in the following situations:

- If a loop is formed with the host controller and the error is zeroed when servo lock is stopped.
- To deliberately set the offset to some value.

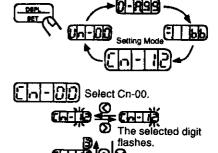
This mode can also be used to check the data set in the reference offset automatic adjustment mode.

In principle, this mode operates in the same way as the reference offset automatic adjustment mode, except that the amount of offset is directly input during the adjustment.

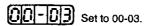
Offset Adjustment Range and Setting Units are as follows:

Follow the procedure below to manually adjust the reference voltage.

For JUSP-OP02A-1

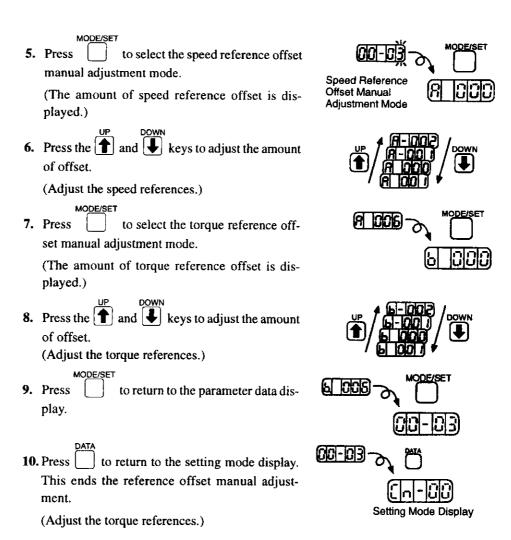

1. Press best to select the parameter setting mode.

 Select the parameter number Cn-00.
 (Parameter Cn-00 is selected when the power is turned ON.)


Press the () and () keys to select the digit.

Press and keys to change the value.

- 3. Press ENTER to display the current data for the parameter Cn-00.
- 4. Press the and keys to change the data to 03.



Press the keys to change the value.

JUSP-OP03A

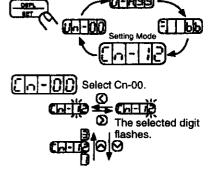
4.2.5 Reference Offset Manual Adjustment Mode

5	Press to select the speed reference offset manual adjustment mode.	Speed Reference	Dap.
	(The amount of speed reference offset is displayed.)	Offset Manual Adjustment Mode	
6	Press the and keys to adjust the amount of offset.		
	(Adjust the speed references.)	, GINN	
7.	Press to select the torque reference off-set manual adjustment mode.	9 006	08°L 8ET
	(The amount of torque reference offset is displayed.)		
8.	Press the and keys to adjust the amount of offset. (Adjust the torque references.)	△/ 6-0 6-0 6-0 6-0	
9.	Press SET to return to the parameter data display.		2007L - (1) 3)
10	Press to return to the setting mode display. This ends the reference offset manual adjustment.		
	(Adjust the torque references.)	Setting M	lode Display
For	JUSP-OP03A		
1.	Press to select the parameter setting mode.	MODE SET OF	-1999 htting Mode (1) 100
2.	Press the and keys to select the parameter number Cn-00. (Parameter Cn-00 is selected when the power is turned ON.)	Select C	n-00.
	Press to display the current data for the parameter Cn-00.	Parameter Number	Data Da
	Press the and keys to change the data to 03.	00-03 Set to 00 00-02 00-00 00-00	Value changes rapidly when key held down.

4.2.6 Clearing Alarm Trace-back Data

This procedure clears the alarm history, which stores the alarms occurring in the SERVO-PACK. Each alarm in the alarm history is set to A99, which is not an alarm code. Refer to Section 4.2.1 Operation in Alarm Trace-back Mode for details.

Follow the procedure below to clear the alarm trace-back data.

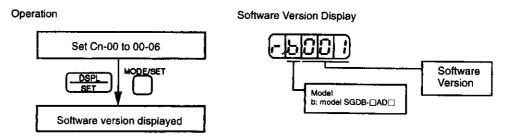

For JUSP-OP02A-1

JUSP-OP02A-1

- 1. Press set to select the parameter setting mode.
- Select the parameter number Cn-00.
 (Parameter Cn-00 is selected when the power is turned ON.)

Press the () and () keys to select the digit.

Press the and keys to change the value.


4.2.6 Clearing Alarm Trace-back Data

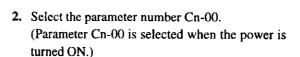
	3. Press ENTER to display the current data for the parameter Cn-00.	Parameter Number Data Data Data
	4. Press the and keys to change the data to 02.	Press the Set to 00-02. keys to change the value.
	5. Press to clear the alarm trace-back data.	
	6. Press DATA to return to the parameter data display. For JUSP-OP03A	Clear the alarm trace-back data. Parameter Number Data Data
	FUT JUST-UPUSA	
JUSP-OP03A	1. Press to select the parameter setting mode.	MODE/SET OF RIGHT
	2. Press the and keys to select the parameter number Cn-00. (Parameter Cn-00 is selected when the power is turned ON.)	[n-]] Select Cn-00.
	3. Press to display the current data for the parameter Cn-00.	Parameter Number Data
	4. Press the and keys to change the data to 02.	Set to 00-02. OC-DI Value changes rapidly when key held down.
	5. Press to clear the alarm trace-back data.	MODE/SET
	DATA	Clear the alarm trace-back data.
	6. Press to return to the parameter data display.	Parameter Number Data

4.2.7 Checking the Software Version

Set Cn-00 to 00-06 to select the software-version check mode.

This mode is used for maintenance and is not normally used by the customer.

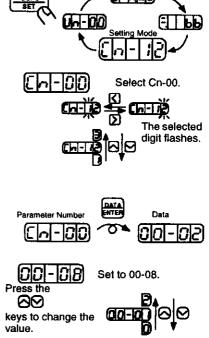
4.2.8 Current Detection Offset Manual Adjustment Mode


Current detection offset manual adjustment is performed at Yaskawa before shipping. Basically, the customer need not perform this adjustment. Perform this adjustment only if highly accurate adjustment is required when the Digital Operator is combined with a specific motor.

Run the motor at a speed of approximately 100 r/min, and adjust the Digital Operator until the torque monitor ripple is minimized. Adjust the U-phase and V-phase offsets alternately several times until these offsets are well balanced.

Follow the procedure below to perform current detection offset manual adjustment.

JUSP-OP02A-1


For JUSP-OP02A-1

Press the () and () keys to select the digit.

Press and keys to change the value.

- 3. Press ENTER to display the current data for the parameter Cn-00.
- 4. Press the and keys to change the data to 08.

JUSP-OP03A

4.2.8 Current Detection Offset Manual Adjustment Mode

6	5. Press oser to select the current detection offset manual adjustment mode. (The amount of current detection offset is displayed.) 5. Press the and keys to switch between U-phase and V-phase current adjustment modes. 7. Press the and keys to adjust the amount of current detection offset.	Current Detection Offset Manual Adjustment Mode Phase-u Current Adjustment Adjustment Mode Phase-u Current Adjustment Adjustment Mode RI-000
	Press to return to the parameter data display.	
	Press to return to the parameter setting mode display. This ends the current detection offset manual adjustment.	OO-CO EMB
1.	Press to select the parameter setting mode.	MODE/SET 0-199 Un-100 Setting Mode (1)
2.	Press the and to select the parameter number Cn-00. (Parameter Cn-00 is selected when the power is turned ON.)	Select Cn-00.
	Press to display the current data for the parameter Cn-00. Press the and keys to change the data	Parameter Number Data Data
	MODE/SET Press to select the current detection off-	Press the keys to change the value
	set manual adjustment mode. (The amount of current detection offset is dis-	Current Detection Offset Manual Adjustment Mode

played.)

5

SERVO SELECTION AND DATA SHEETS

This chapter describes how to select Σ -Series servo drives and peripheral devices.

The section also presents the specifications and dimensional drawings required for selection and design.

Choose and carefully read the relevant sections of this chapter.

5.1	Selecting a Σ-Series Servo	5 - 3
	5.1.1 Selecting a Servomotor	5 - 3
	5.1.2 Selecting a SERVOPACK	5 - 9
	5.1.3 Selecting a Digital Operator	5 - 10
5.2	SGMB Servomotor	5 - 11
	5.2.1 Ratings and Specifications	5 - 11
	5.2.2 Mechanical Characteristics	5 - 16
5.3	SERVOPACK Ratings and Specifications .	5 - 18
•	5.3.1 Combined Specifications	5 - 18
	5.3.2 Ratings and Specifications	5 - 19
	5.3.3 Overload Characteristics	5 - 22
	5.3.4 Starting Time and Stopping Time	5 - 23
	5.3.5 Load Moment of Inertia	5 - 23
	5.3.6 Overhanging Loads	5 - 24
5.4	Σ -Series Dimensional Drawings	5 - 25
	5.4.1 Servomotor Dimensional Drawings	5 - 25
	5.4.2 SERVOPACK Dimensional Drawings	5 - 30
	5.4.3 Digital Operator Dimensional Drawings	5 - 33

5.5	Specifications and Dimensional Drawings of	
	Peripheral Devices	5 - 35
	5.5.1 Cable Specifications and Peripheral Devices	5 - 35
	5.5.2 1CN Connector	5 - 37
	5.5.3 Connector Terminal Block Converter Unit	5 - 39
	5.5.4 Cable With 1CN Connector and One End Without	
	Connector	5 - 41
	5.5.5 2CN Encoder Connector on SERVOPACK End	5 - 42
	5.5.6 Encoder Cables	5 - 43
	5.5.7 Battery for Absolute Encoder	5 - 48
	5.5.8 Brake Power Supply	5 - 49
	5.5.9 Circuit Breaker	5 - 50
	5.5.10 Noise Filter	5 - 51
	5.5.11 Surge Suppressor	5 - 52
	5.5.12 Regenerative Resistor Unit	5 - 53
	5.5.13 Dynamic Brake (DB) Unit	5 - 57
	5.5.14 Thermal Relays	5 - 63
	5.5.15 Variable Resistor for Speed Setting	5 - 64
	5.5.16 Encoder Signal Converter Unit	5 - 64
	5.5.17 Cables for Connecting PC and SERVOPACK	5 - 66

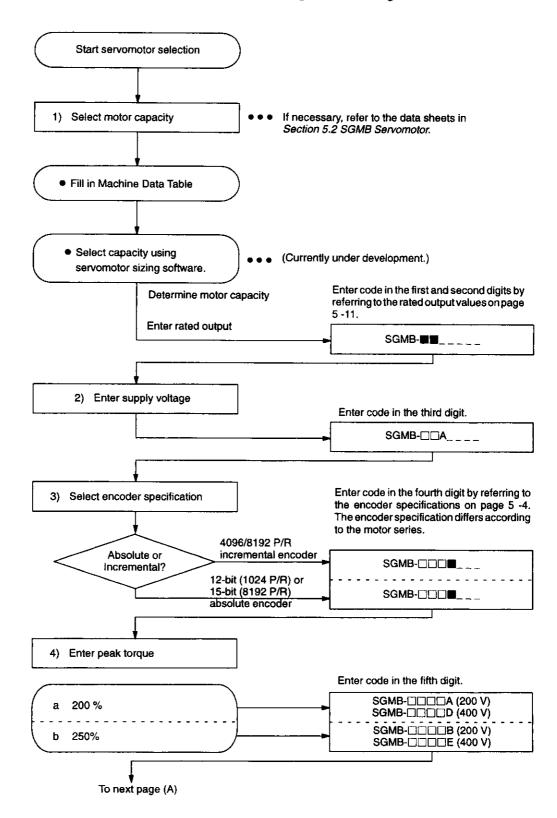
5.1 Selecting a Σ -Series Servo

This section describes how to select the Σ-Series servomotor, SERVOPACK, and Digital Operator.

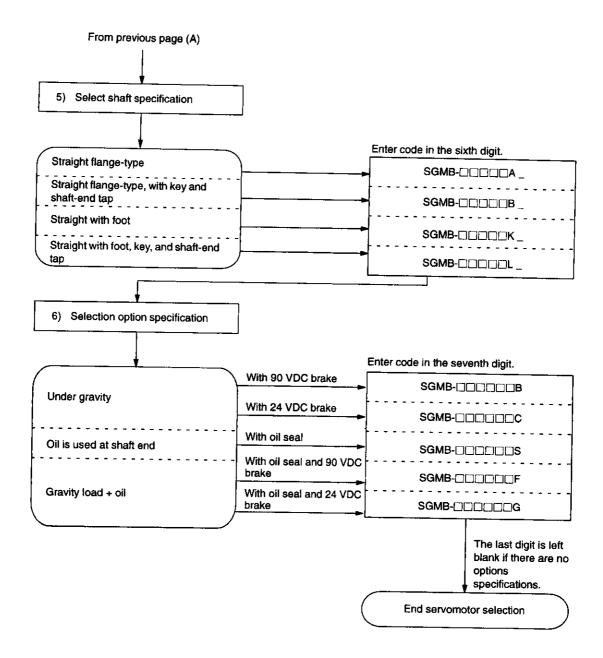
5.1.1 Selecting a Servomotor

Select an SGMB servomotor according to the servo system to be used. Each model can be identified by the seven-digit alphanumeric characters following "SGMB-." Refer to the flowchart for servomotor selection shown here to determine the appropriate servomotor.

5.1.1 Selecting a Servomotor

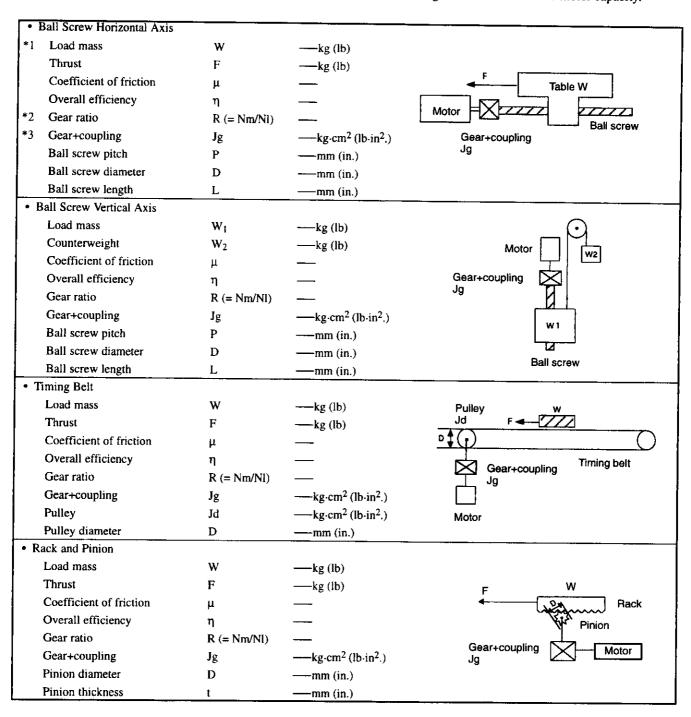

	SGM B- 2B A 2 A
Σ-Series ————————————————————————————————————	
Type B: SGMB servomotor	
Motor capacity 2B: 22 kW	
Standards	
Encoder specification 2: 8192 P/R incremental encoder (standard) 6: 4096 P/R incremental encoder (semi-standard) W: 8192 P/R absolute encoder (semi-standard) S: 1024 P/R absolute encoder (semi-standard)	
Supply voltage, rated speed A, B: 200 V, 1500 r/min D, E: 400 V, 1500 r/min	
Shaft specifications Blank: Straight flange-type A: Straight flange-type, (only used with option specif B: Straight flange-type, with key and shaft-end tap K: Straight with foot L: Straight with foot, key, and shaft-end tap	fications)
Options B: 90-VDC brake C: 24-VDC brake S: Oil seal F: Oil seal and 90-VDC brake G: Oil seal and 24-VDC brake	

	$\bigcup_{i=1}^{n}$	Flowchart for servomotor selection


	Selected Motor Model					
Example SGMB-2BA2A						
Axis 1	SGMB -					
Axis 2	SGMB -					
• • •	Blank for standard specification					

■ Flowchart for Servomotor Selection

Select the actual SGMB servomotor according to the following flowchart.



5.1.1 Selecting a Servomotor

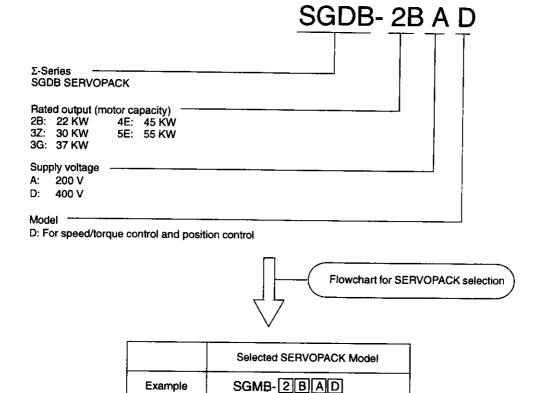
Machine Data Table

Fill out the machine data table below as an aid to selecting the drive system. When the machine data table is complete, use the servomotor sizing software to select the motor capacity.

5.1.1 Selecting a Servomotor

Roll Feeder			
Load J	Jℓ	1 2 (n · 2)	Press force
Tension	F	kg·cm ² (lb·in ² .)	1
Press force	P	kg (lb)	₹
Roller diameter	r D	—-kg (lb)	Roller
Coefficient of friction	_	—mm (in.)	
Overall efficiency	μ		Motor
Gear ratio	η		
Gear+coupling	R (= Nm/NI)	2 ···· 2	Gear+coupling
• Rotor	Jg	kg·cm ² (lb·in ² .)	
Load J	1.0	. 2	
	Jℓ Te	kg·cm ² (lb·in ² .)	Τ ℓ
Load torque	Tℓ	kg·cm (lb·in.)	Motor
Overall efficiency	η		Gear+coupling Je
Gear ratio	R (= Nm/Nl)		Gear+coupling
Gear+coupling	Jg	kg·cm ² (lb·in ² .)	
• Others			
Load J	1ℓ	kg·cm ² (lb·in ² .)	
Load torque	Tℓ	kg·cm (lb·in.)	
Motor speed	Nm	—r∕min	
DUTY	td	 s	
Positioning time	ts	 s	
Accel/decel time	ta	s	
 Duty cycle 			
DUTY	td	 s	V &
Positioning distance	Ls	mm (in.)	Ls
Moving member speed	Vℓ	m/min	ta
Positioning time	ts	s	ts Maria
Accel/decel time	ta	—_s	t d
Enter either Vℓ or ts. If	both are entered, specify p	oriority.	i
Operating environment	Operating temperature		
<u></u>	Other		_

- * 1. J (inertia) of Table W (load weight) and J (inertia) of the motor are automatically calculated by the servomotor sizing software.
- * 2. Gear ratio R = Nm/N ℓ = motor-speed/load-speed
- * 3. Gear+coupling J g: J of gear or coupling


 This is J of the joint (including a gear) between the motor and the load (machine).

5.1.2 Selecting a SERVOPACK

Axis 1

Axis 2

Select an SGDB SERVOPACK according to the servo system to be used. Each model can be identified as four-digit alphanumeric characters following "SGDB-".

SGMB-

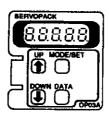
SGMB-

^{*} The motor model can be changed within the same group by altering the parameter setting. (See the table on the next page.)

5.1.3 Selecting a Digital Operator

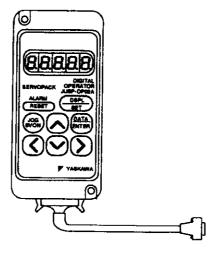
Select an SGDB SERVOPACK according to the motor to be used. The following table shows the correspondence between SERVOPACK and motor models.

Group	SERVOPACK Model	Motor Model			
2BA	SGDB-2BAD	SGMB-2BA□A			
	333 257.2	SGMB-2BA□B			
3ZA	SGDB-3ZAD	SGMB-3ZA□A			
	002002110	SGMB-3ZA□B			
3GA	SGDB-3GAD	SGMB-3GA□A			
3000-307		SGMB-3GA□B			
2BD	SGDB-2BDD SGMB-2BA□D SGMB-2BA□E	SGMB-2BA□D			
		SGMB-2BA□E			
3ZD	SGDB-3ZDD	SGMB-3ZA□D			
3ZA SG 3GA SG 2BD SG 3ZD SG 3GD SGI 4ED SGI		SGMB-3ZA□E			
3GD	SGDB-3GDD	SGMB-3GA□D			
		SGMB-3ZA□A SGMB-3ZA□A SGMB-3ZA□B SGMB-3GA□A SGMB-3GA□A SGMB-3GA□A SGMB-3GA□B SGMB-2BA□D SGMB-2BA□D SGMB-2BA□D SGMB-3ZA□D SGMB-3ZA□D SGMB-3GA□D SGMB-3GA□D SGMB-3GA□E SGMB-4EA□D DB-4EDD SGMB-4EA□D SGMB-5EA□D SGMB-5EA□D			
4ED	SGDB-4EDD				
		SGMB-4EA□E			
5ED	SGDB-5EDD	SGMB-5EA□D			
		SGMB-5EA□E			


Note: The motor model can be changed within the same group by altering the setting in the parameters.

5.1.3 Selecting a Digital Operator

The following two types of Digital Operator are available.


The two types cannot be used simultaneously. However, it is convenient to have both types and use whichever suits the circumstances.

Each type differs in shape but the operating functions are identical.

JUSP-OP03A (Mount Type)

 Use attached to the top of the SERVOPACK front face.

JUSP-OP02A-1 (Hand-held Type)

 Use held in the hand white connected with the 1 m cable supplied.

5

5.2 SGMB Servomotor

This section provides tables of ratings and specifications for SGMB servomotors.

5.2.1 Ratings and Specifications

Ratings and Specifications of SGMB servomotors

Time rating:

Continuous

Thermal class:

F

Vibration class:

15µm or below

Withstand voltage:

1500 VAC

Insulation resistance:

500 VDC $10M\Omega$ min.

Enclosure:

Totally enclosed, cooled separately

IP44 specifications

Ambient temperature:

0 to 40°C

Ambient humidity:

20% to 80% (non-condensing)

Excitation:

Permanent magnet

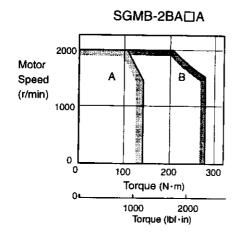
Drive method:

Direct drive

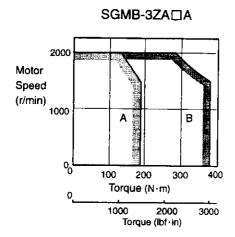
Mounting:

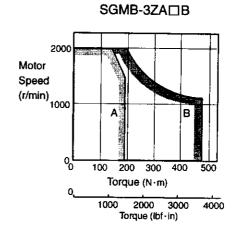
Flange method

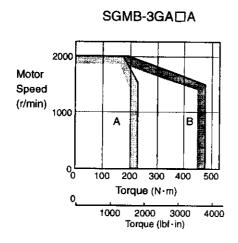
Servomotor S	GMB-	2BA□A	2BA□B	3ZA□A	3ZA□B	3GA□A	3GA⊟B	2BA□D	2BA∏E
Rated Output*	kW (HP)	22 (29.5)	22 (29.5)	30 (40.2)	30 (40.2)	37 (49.6)	37 (49.6)	22 (29.5)	22 (29.5)
Rated Torque*	N⋅m	140	140	191	191	236	236	140	140
	lbf∙in	1239	1239	1690	1690	2088	2088	1239	1239
Instantaneous Peak	N·m	280	350	382	478	471	589	280	350
Torque*	lbf-in	2478	3097	3380	4230	4168	5213	2478	3097
Rated Current	A (rms)	120	100	175	145	210	180	60	50
Instantaneous Max Current*	A (rms)	240	240	340	340	460	460	120	120
Rated Speed*	r/min			*	15	00			
Instantaneous Max Speed*	r/min		2000						
Moment of Inertia	×10 ⁻⁴ kg⋅m ²	592	592	773	773	1390	1390	592	592
	×10 ⁻³ lbf·in·s ²	524	524	685	685	1233	1233	524	524
Rated Power Rate*	kW/s	331	331	472	472	401	401	331	331
Rated Angular Acceleration*	rad/s ²	2360	2360	2470	2470	1700	1700	2360	2360

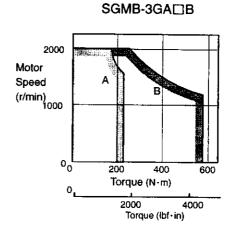

5.2.1 Ratings and Specifications

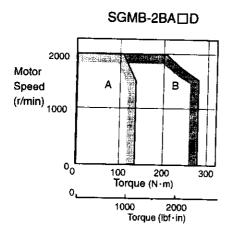

Servomotor S	GMB-	3ZA□D	3ZA□E	3GA□D	3GA□E	4EA□D	AFADE		
Rated Output*	kW (HP)	30 (40.2)	30 (40.2)	37 (49.6)	37 (49.6)		4EADE	5EA□D	5EA□E
Rated Torque*	N·m	191	191	236		45 (60.3)	45 (60.3)	55 (73.7)	55 (73.7)
•	lbf-in	1690		 	236	286	286	350	350
Instantaneous Peak	N·m		1690	2088	2088	2531	2531	3097	3097
Torque*		382	478	471	589	572	715	700	875
	lbf·in	3380	4230	4168	5213	5062	6328	6195	7744
Rated Current	A (rms)	85	70	105	90	135	110	160	130
Instantaneous Max Current*	A (rms)	170	170	230	230	280	280	340	340
Rated Speed*	r/min				15/	<u> </u>			
Instantaneous Max Speed*	r/min								
Moment of Inertia	×10 ⁻⁴ kg·m ²	773	773	1390	1390	1680	1680	1970	1970
	$\times 10^{-3}$ lbf·in·s ²	685	685	1233	1233	1484	1484	1745	1745
Rated Power Rate*	kW/s	472	472	401	401	487	487	622	600
Rated Angular Acceleration*	rad/s ²	2470	2470	1700	1700	1700	1700	1780	622 1780

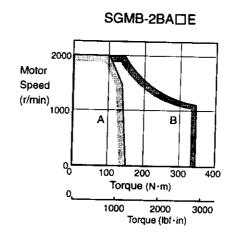

^{*} These items and torque-speed characteristics quoted in combination with an SGDB SERVOPACK at an armature winding temperature of 20°C.

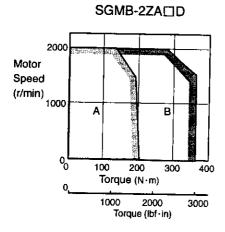

Note: These characteristics can be obtained when the following heat sinks (steel plates) are used for cooling purposes: $650 \times 650 \times 35$ (mm) $(25.59 \times 25.59 \times 1.38$ (in))

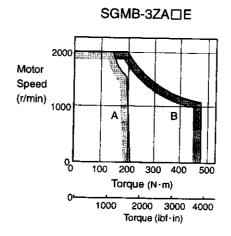

■ SGMB Servomotor (Rated Motor Speed: 1500 r/min) Torque-Motor Speed Characteristics

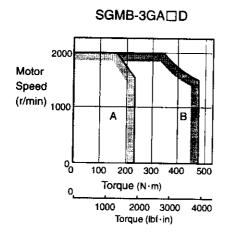


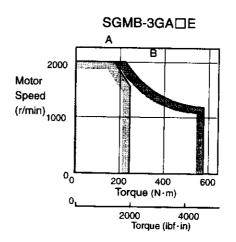


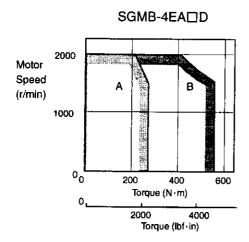


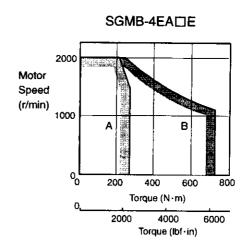


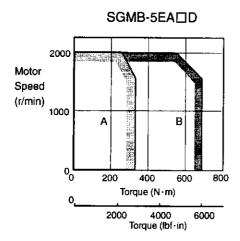

A: Continuous Duty Zone B: Intermittent Duty Zone

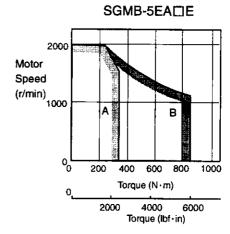

5.2.1 Ratings and Specifications











A: Continuous Duty Zone B: Intermittent Duty Zone

A: Continuous Duty Zone B: Intermittent Duty Zone

5.2.2 Mechanical Characteristics

Allowable Radial Load, Allowable Thrust Load

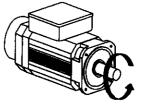
The output shaft allowable loads for SGMB servomotor are shown below.

Conduct mechanical design such that the thrust loads and radial loads do not exceed the values stated below.

Servomotor Model	Allowable Radial Load Fr [N(lbf)]	Allowable Thrust Load Fs [N(lbf)]	LR mm (in.)	Reference Diagram
SGMB-2BA□□	5880 (1322)	2156 (485)	100 (3.94)	, LR
SGMB-3ZA□□	6272 (1410)	2156 (485)	100 (3.94)	_
SGMB-3GA□□	7448 (1675)	2156 (485)	100 (3.94)	
SGMB-4EA□□	7840 (1763)	2156 (485)	100 (3.94)	} • •
SGMB-5EA□□	8428 (1895)	2156 (485)	110 (4.33)	V_J

Note: Allowable radial and thrust loads shown above are the maximum values that can be applied to the shaft end from motor torque or other loads.

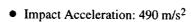
Mechanical Tolerance


The tolerances of the SGMB servomotor output shaft and installation are shown in the table below.

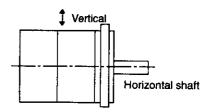
Toleran	ce (T.I.R.)		Reference Diagram
Perpendicularity between and output shaft	flange face	0.04 mm (0.0016 in.)	
Mating concentricity of fla	ange O.D.	0.04 mm (0.0016 in.)	
Run-out at end of shaft	0	0.02 mm (0.00079 in.)	L-40-

- 1. T.I.R. = Total Indicator Reading
- 2. As for the tolerance C, refer to the each dimensional drawing.
- 3. Direction of Motor Rotation

Positive rotation of the servomotor is counterclockwise, viewing from the drive end.



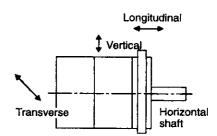
Forward rotation


5

■ Impact Resistance

Mount the servomotor with the axis horizontal. The servomotor must withstand the following vertical impacts.

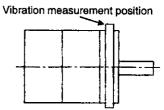
• Number of Impacts: 2


IMPORTANT

In SGMB servomotors, an accurate detector is attached to the shaft at the opposite end from the load. Avoid applying impacts directly to the shaft as these may damage the detector.

■ Vibration Resistance

Mount the servomotor with the axis horizontal. The servomotor must withstand the following vibration accelerations in three directions: vertical, transverse, and longitudinal.


• Vibration Acceleration: 24.5 m/s²

■ Vibration Class

The SGMB servomotor meets the following vibration class at rated speed.

Vibration Class: 15μm or below

Vibration Class

Vibration class $15\mu m$ or below indicates that the total amplitude of vibration of the motor alone, running at rated speed, does not exceed $15\mu m$.

5.3.1 Combined Specifications

5.3 SERVOPACK Ratings and Specifications

This section presents tables of SGDB SERVOPACK ratings and specifications.

5.3.1 Combined Specifications

The following table shows the specifications obtained when SGDB SERVOPACKs are combined with SGMB servomotors:

SERVO SGDB-		2BAI)	3ZAI)	3GAI)	2BDI)	3ZDI)	3GDI)	4EDI)	5EDI)
Motor	Model SGMB-	2BA □A	2BA □B	3ZA □A	3ZA □B	3GA □A	3GA □B	2BA □D	2BA □E	3ZA □D	3ZA □E	3GA □D	3GA □E	4EA □D	4EA □E	5EA □D	5EA □E
	Capacity kW (HP)	22 (29.5)	30 (40.2)	37 (37 (49.6) 22 (29.5)			30 (40.2)	37 (1 <u> </u>	45 (60.3)		55 (73.7)	
	Rated/ Max. Motor Speed r/min								1000	/2000				I		L	
Applica Encoder		Standa	ard: Inc	rement	al enco	der (819	2 P/R)							<u> </u>			
Continu Output (120	100	175	145	210	180	60	50	85	70	105	90	135	110	160	130
Max. Ot Current	A (rms)	240	240	340	340	460	460	120	120	170	170	230	230	280	280	340	340
Allowab Inertia* J _L ×1 (×10	ole Load 10-4 kg·m ² -3 oz·in·s ²)	290 (419		384 (547		69; (984		296 (419		386 (547		69: (984	- 1	84 (118		98 (139	

5.3.2 Ratings and Specifications

The ratings and specifications of the SGDB SERVOPACK are shown below. Refer to them as required when selecting a SERVOPACK.

	SERVOPA	CK SGDB-		200 V Serie	S			400 V Serie	\$	
			2BAD	3ZAD	3GAD	2BDD	3ZDD	3GDD	4EDD	5EDD
Servomo	tor SGMB-		2BA□□	3 Z A□□	3GA□□	3BA□□	3ZA□□	3GA□□	4EA□□	5EA□□
Continuo	ous Output k	(W (HP)	22 (29.5)	30 (40.2)	37 (49.6)	22 (29.5)	30 (40.2)	37 (49.6)	45 (60.3)	55 (73.7)
Allowab $J_{ m L}$	le Load Iner		2960 (41910)	3865 (54730)	6950 (98420)	2960 (41910)	3865 (54730)	6950 (98420)	8400 (118900)	9850 (139400)
	$\times 10^{-4} \text{ kg}$	$m^2 (\times 10^{-3} \text{ oz} \cdot \text{in} \cdot \text{s}^2)$								
Basic Specifi-	Specifi- Power			se 200 to 23 15%, 50/60		Three-phas	se 380 to 46	0 VAC +10	% to -15%,	50/60 Hz
cations	Supply	Main Circuit Power Supply Capacity kVA	36.7	50.1	61.8	36.7	50.1	61.8	75.2	91.9
		Control Circuit*1			20 VAC + 10 30 VAC + 10	•				<u> </u>
		Control Circuit Power Supply Capacity	150 VA							
Basic	Control M	lode	Three-phas	e, full-wave	rectificatio	n IGBT PW	M (sine-wa	ve driven)		
Specifi- cations	Feedback	<u> </u>			bsolute enc					
Cations	Location	Ambient/Storage Temp.* ²	0 to 55°C/-	-20 to 85°C	2					
		Ambient/Storage Humidity	90% or less	s (no-conde	nsing)	-				
		Vibration/Shock Resistance	4.9m/s ² /19	0.6m/s ²	-					
	Structure		Base moun	ted	3606 11					
	Approx. n	nass kg(lb)	57 (126)	58 (128)	60 (132)	40 (88)	45 (99)	55 (121)	60 (1	32)

5.3.2 Ratings and Specifications

	SERVOP	ACK SGE)B-	2	00 V Serie	s			00 V Serie	<u> </u>	
				2BAD	3ZAD	3GAD	2BDD	3ZDD	3GDD	4EDD	5EDD
Speed/ Torque	Perfor- mance	Speed Range	Control	1:5000 (pro	ovided that the rated to	the lower li	mit of the sp	peed control	range does	not cause the	ne motor to
Control Mode		Speed Regu- la-	Regula- tion			nax. (at rated					, _ , _,
		tion*3	Voltage Regula- tion	Rated volta	ge ±10%:	0% (at rated	l speed)				
			Temper- ature Regula- tion	25±25°C:	0.1% max.	(at rated spe	eed)				
		Freque Charac	ncy teristics	100Hz (at <i>J</i>	L=J _M)						<u> </u>
		Accel/I Setting	Decel Time	0 to 10 s			· · · · · · · · · · · · · · · · · · ·				
	Input Signal	Speed Refer- ence	Reference Voltage*4	±6 VDC (v positive refe	variable setterence)	ting range:	<u></u> ±2 to ±10 `	VDC) at rate	d speed (fo	rward rotati	on with
			Input Imped- ance	Approx. 30	kΩ			, , , , , , , , , , , , , , , , , , , ,		·	
	Circuit Time Constant										
į		Torque Refer- ence	Reference Voltage*4	±1 to ±10	VDC at rat	ed speed (fo	rward rotati	on with posi	tive referen	nce)	
			Input Imped- ance	Approx. 30 k	ωΩ						
			Circuit Time Constant	Approx. 47 μ	ıs						
		Built-in Power S	Reference upply	±12 V, ±30	mA						
osition	Perfor-	Bias Set	ting	0 to 450 r/mir	n (setting r	esolution: 1	r/min)				
ontroi Iode	mance	Feed-for Compen		0 to 100% (se	etting resol	ution: 1%)			·		
		Position Width Se	Complete etting	0 to 250 refer	ence units	(setting reso	lution: 1 res	ference unit)		<u> </u>	
	Input Signal	Refer- ence	Туре	SIGN + PUL: CW pulse trai	SE train, 90 in	0° phase diff	ference 2-pl	iase pulse (p	hase A + pl	nase B), or	CCW +
		Pulse	Pulse Buffer	Line driver (+				r +12 V leve	1)		
			Pulse Frequen- cy	Max. 450/200	kpps (line	driver/open	collector)				
		Control S	Signal	CLEAR (inpu	t pulse for	m identical t	o reference	pulse)			
		Built-in (lector Po ply*5	Open Col-	+12 V (with b							

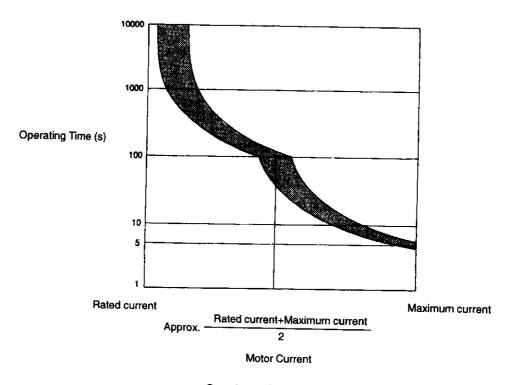
	SERVOPA	CK SGDE	3-		200 V Series	5			400 V Serie	8				
				2BAD	3ZAD	3GAD	2BDD	3ZDD	3GDD	4EDD	5EDD			
I/O Sig- nals	Position	Output	Output Form	Phases A, Phase S: L	B and C: Li ine driver o	ne driver ou utput (only	itput when 12-bit	absolute er	ncoder is use	ed)				
			Frequen- cy Di- viding Ratio		N (N: Numb									
	Sequence	<u>.</u>		Servo ON, P control (or forward/reverse rotation in contact input speed control mode), forward rotation prohibited (P-OT), reverse rotation prohibited (N-OT), alarm reset, forward rotation current limit, and reverse rotation current limit (or contact input speed control)										
	Sequence Output		Servo aları	m, 3-bit alar	m codes									
	Any 3 of those signals Positioning complete (speed coincidence), TGON, servo ready, current limit, brain overload warning, overload detected		nt limit, bra	ke release,										
	Analog M Output	Ionitor	Any 2 of those signals	Torque: 2	//1000 r/min V/rated torq V/reference	ue	0 r/min 5 V/100 ref	erence units						
Built-in	Dynamic	Brake (D	В)	Activated a	at main pow	er OFF, ser	vo alarm, se	rvo OFF or	overtravel	7.0.0				
Func- tions	Regenera	ive Proce	ssing	Incorporate	ed. External	regenerativ	e resistor m	ust be mour	ited.					
Hous	Overtrave	l (OT) Pr	evention	Motor is st N-OT is ac	opped by dy tivated.	namic brak	e, decelerate	es to a stop,	or coasts to	a stop whe	n P-OT or			
	Protection	.		Overcurren power oper error, parar	n phase, ove	regenerativerflow, over	e error, mai speed, encod	n circuit vo ler error, en	ltage error, l coder discor	neat sink ov nnected, ove	erheat, errun, CPU			
	LED Disp	lay		POWER, A	ALARM, CI	large								
	Analog M	onitor (50	CN)	Same analo	g monitor s	ignal as 1C	N is availab	le.						
Built-in Func- tions	Commu- nication	Interface	9	Digital Ope RS422A po met.)	erator (mour ort such as p	nt type or ha ersonal con	and-held typ nputer (RS2)	e) 32C port ca	n be used if	some condi	tions are			
		1:N Contion	nmunica-	N can be up	p to 14 whe	n RS422A p	ort is used.							
		Axis Ad ting* ⁶	dress Set-		al rotary sw munication.		munication		<u> </u>		·			
		Function	าร	Status displautotuning,		er setting, r	nonitor disp	lay, alarm ti	aceback dis	play, joggin	ıg,			
· · · · · · · · · · · · · · · · · · ·	Others			Zero-clamp	, reverse ro	tation conne	ection							

- * 1. The power voltage must not exceed 230 V + 10% (253 V). If it is likely to exceed this limit, use a step-down transformer.
- * 2. The ambient temperature must be within the specified range. Even if the SERVOPACK is installed in a box, the temperature inside the box must not exceed the range.
- * 3. Speed regulation can be calculated using the following formula:

$$\left(\text{Speed regulation} = \frac{\text{(no-load motor speed - full-load motor speed)}}{\text{rated motor speed}} \times 100\%\right)$$

Under actual operating conditions, voltage or temperature fluctuation causes drift to the amplifier or changes the operating resistance, resulting in the motor speed being changed.

The percentage of the motor speed change to the rated motor speed is called "speed regulation".


- * 4. Forward rotation is defined as the clockwise rotation when viewed from the motor on the opposite side of the load. (It is the counterclockwise rotation when viewed from the load or shaft.)
- * 5. Built-in open collector power supply is not electrically isolated from the control circuit inside the SERVOPACK.
- * 6. For 1:1 communication, set the rotary switch to "0".

5.3.3 Overload Characteristics

5.3.3 Overload Characteristics

The SERVOPACK has a built-in overload protective function to protect the SERVOPACK and servomotor from overload. Therefore, the SERVOPACK allowable power is limited by the overload protective function, as shown below.

The overload detection level is quoted under **hot start** conditions at a motor ambient temperature of 40°C.

Overload Characteristics

♦ Hot Start

Indicates that both SERVOPACK and servomotor have run long enough at rated load to be thermaily saturated.

5

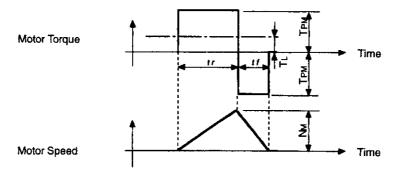
5.3.4 Starting Time and Stopping Time

The motor starting time (tr) and stopping time (tf) under constant load are calculated by the following formulas. The motor viscous torque and friction torque are ignored.

Starting Time: $tf = \frac{2\pi \cdot N_m (J_M + J_L)}{60 \cdot (T_{PM} - T_L)}$ [s]

Stopping Time: $tf = \frac{2\pi \cdot N_m (J_M + J_L)}{60 \cdot (T_{PM} + T_L)}$ [s]

Nm: Motor speed used (r/min.)


J_M: Motor moment of inertia (kg·m²)

J_L: Load converted to shaft moment of inertia (kg·m²)

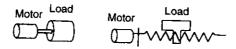
T_{PM}: Maximum instantaneous motor torque obtained in combination with SERVOPACK (N·m)

T_L: Load torque (N·m)

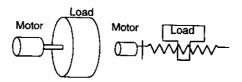
To convert the motor current value into an equivalent torque value, use the following formula: Motor torque constant x motor current value (effective value)

Motor Torque (size) - Motor Speed Timing Chart

5.3.5 Load Moment of Inertia


The larger the load moment of inertia becomes, the worse the movement response of the load. The size of the load moment of inertia (J_L) allowable when using a servomotor must not exceed five times the motor moment of inertia (J_M) .

If the load moment of inertia exceeds five times the motor moment of inertia, an overvoltage alarm may arise during deceleration. To prevent this, take one of the following actions:

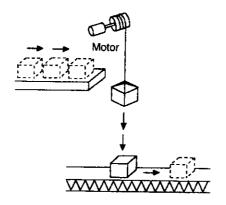

- 1. Reduce the torque limit value.
- 2. Reduce the slope of the deceleration curve.
- 3. Reduce the maximum motor speed.
- 4. Consult your Yaskawa representative.

5.3.6 Overhanging Loads

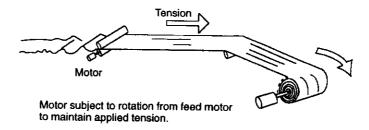
Small Load Inertia

Large Load Inertia

5.3.6 Overhanging Loads


A servomotor may not be operated under an overhanging load, that is a load which tends to continually rotate the motor.

IMPORTANT

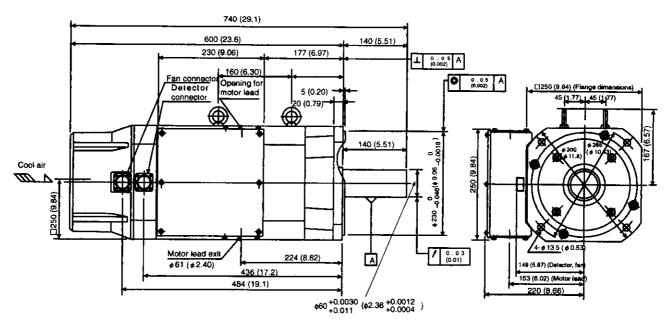

Under an overhanging load (e.g. when the direction of the torque applied by the motor is opposite from the direction of shaft rotation), the SERVOPACK regenerative brake is applied continuously and the regenerative energy of the load may exceed the allowable range and damage the SERVOPACK.

The regenerative brake capacity of the SGDB SERVOPACK is rated for short-time operation, approximately equivalent to the deceleration stopping time.

Overhanging Load Example 1: Motor drive for vertical axis, using no counterweight

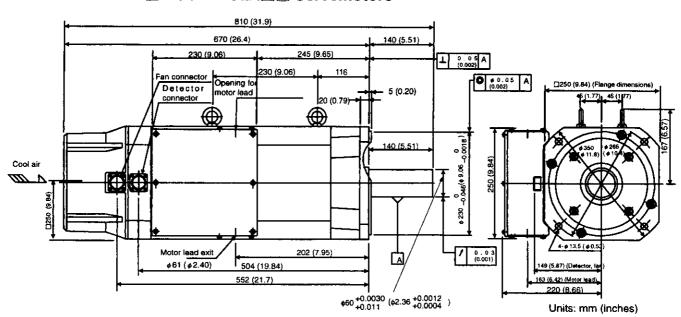
Overhanging Load Example 2: Tension control drive

5

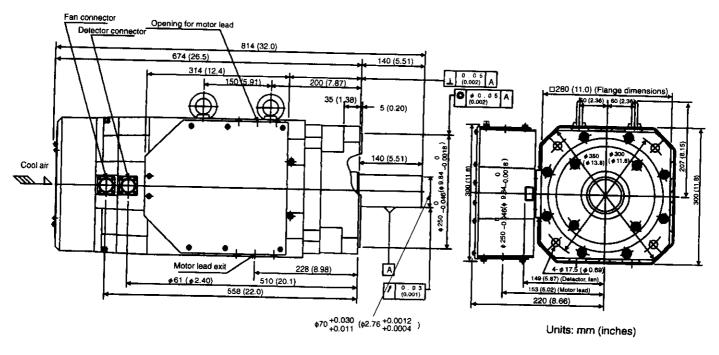

5.4 Σ-Series Dimensional Drawings

This section presents dimensional drawings of the Σ -Series servomotor, SERVOPACK, and Digital Operator.

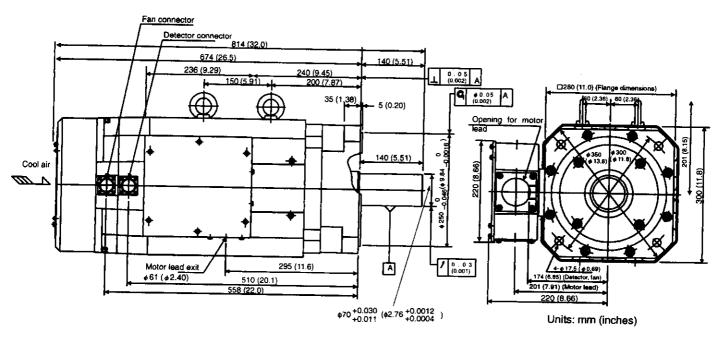
5.4.1 Servomotor Dimensional Drawings


The dimensional drawings of the SGMB servomotors are shown on the following pages.

■ SGMB-2BA□□ Servomotors

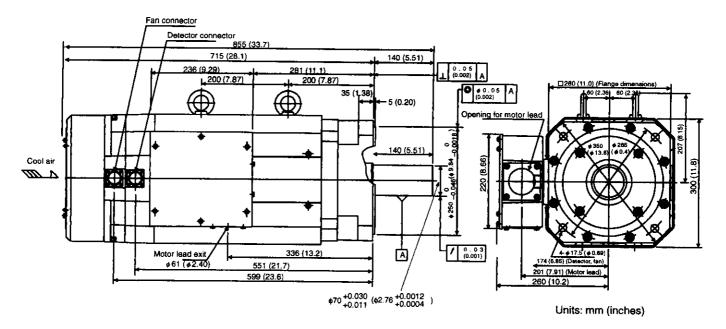

Units: mm (inches)

■ SGMB-3ZA□□ Servomotors

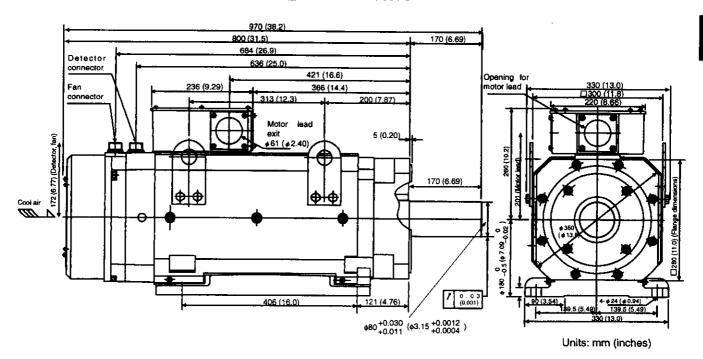


5.4.1 Servomotor Dimensional Drawings

■ SGMB-3GA□A, -3GA□B Servomotors



■ SGMB-3GA□D, -3GA□E Servomotors



5

■ SGMB-4EA□□ Servomotors

■ SGMB-5EA□□K Servomotors

5.4.1 Servomotor Dimensional Drawings

Connector Wiring on Detector End

Incremental Encoders

Receptacle: 97F3102E20-29P
Plug (To be prepared by the customer):
(L-shaped type) JA08A-20-29S-JA-EB or MS3108B20-29S
(Straight type) JA06A-20-29S-J1-EB or MS3106B20-29S
Cable Clamp: JL04-2022CKE (**) or MS3057-12A
** indicates the cable diameter.

Α	A channel output	K	Z channel output
В	/A channel output	L	/Z channel output
C	B channel output	М	_
D	/B channel output	N	
E	C channel output	P	_
F	/C channel output	R	_
G	0 V	S	_
Н	+5 V DC	Т	
J	FG (Frame Ground)		

• 12-bit Absolute Encoders

Receptacle: 97F3102E20-29P
Plug (To be prepared by the customer):
(L-shaped type) JA08A-20-29S-JA-EB or MS3108B20-29S
(Straight type) JA06A-20-29S-J1-EB or MS3106B20-29S
Cable Clamp: JL04-2022CKE (**) or MS3057-12A

* * indicates the cable diameter.

Α	A channel output	K	S channel output
В	/A channel output	L	/S channel output
C	B channel output	M	-
D	/B channel output	N	_
E	Z channel output	P	Capacitor reset
F	/Z channel output	R	Reset
G	0 V	S	0 V (battery)
Н	+5 V DC	Т	3.6 V (battery)
J	FG (Frame Ground)		

5

• 15-bit Absolute Encoders

Receptacle: 97F3102E20-29P

Plug (To be prepared by the customer):

(L-shaped type) JA08A-20-29S-JA-EB or MS3108B20-29S (Straight type) JA06A-20-29S-J1-EB or MS3106B20-29S

Cable Clamp: JL04-2022CKE (**) or MS3057-12A

* * indicates the cable diameter.

A	A channel output	K	_
В	/A channel output	L	_
C	B channel output	М	_
D	/B channel output	N	_
E	Z channel output	P	-
F	/Z channel output	R	Reset
G	0 V	S	0 V (battery)
Н	+5 V DC	Т	3.6 V (battery)
J	FG (Frame Ground)		

Note: 1. Terminals K to P are not used.

2. Receptacle, plug, and cable clamp are common regardless of motor capacity.

Connector Wiring on Fan End

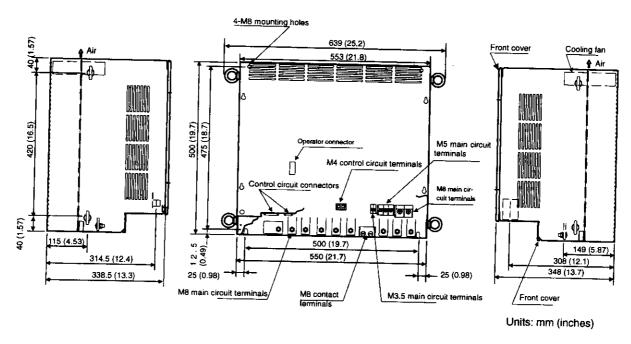
Receptacle: CE05-2A18-10PD-B

Plug (To be prepared by the customer):

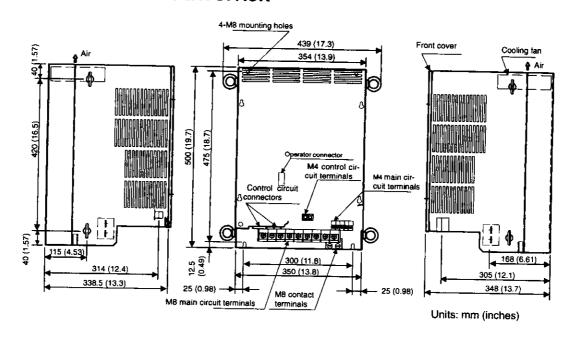
(L-shaped type) CE05-8A18-10SD-B-BAS or MS3108B18-10S (Straight type) CE05-6A18-10SD-B-BSS or MS3106B18-10S

Cable Clamp: CE3057-10A-* (D265) or MS3057-10A

* * indicates the cable diameter.

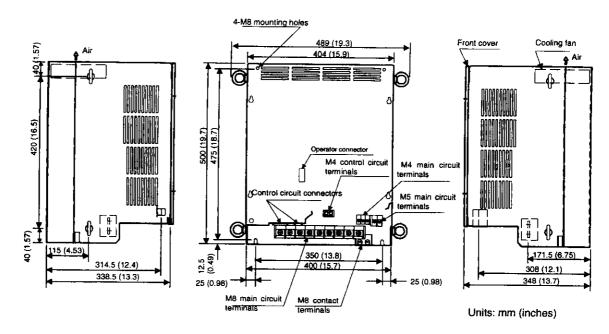

Α	Fan terminal (U)
В	Fan terminal (V)
C	Fan terminal (W)
D	-

5.4.2 SERVOPACK Dimensional Drawings

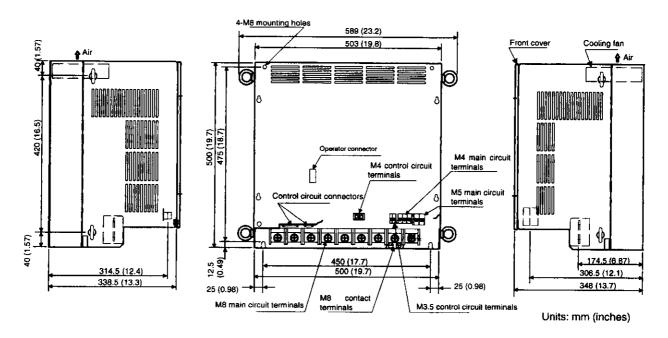

5.4.2 SERVOPACK Dimensional Drawings

The dimensional drawings of the SGDB SERVOPACKs are shown on the following pages.

■ SGDB-3GAD SERVOPACK

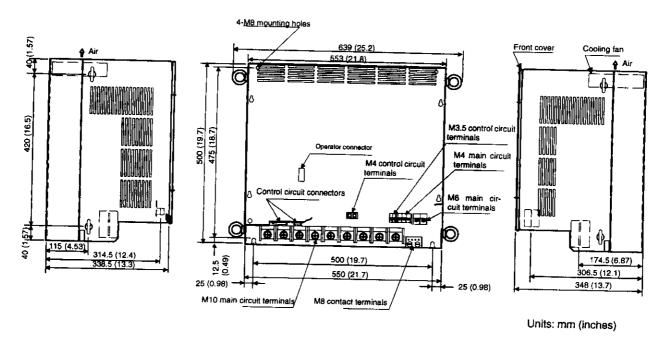


SGDB-2BDD SERVOPACK



5

■ SGDB-3ZDD SERVOPACK

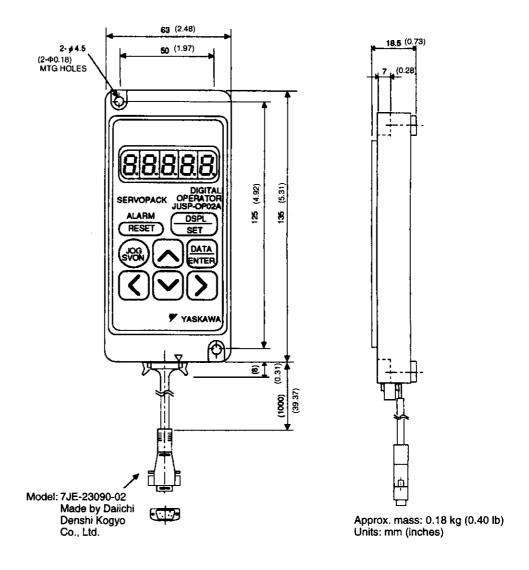


SGDB-3GDD SERVOPACK

5.4.2 SERVOPACK Dimensional Drawings

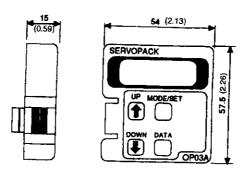
■ SGDB-4EDD SERVOPACK

SGDB-5EDD SERVOPACK


5.4.3 Digital Operator Dimensional Drawings

The following two types of Digital Operator are available.

JUSP-OP02A-1 (Hand-held Type)


JUSP-OP03A (Mount Type)

• JUSP-OP02A-1

5.4.3 Digital Operator Dimensional Drawings

• JUSP-OP03A

Approx. mass: 0.02 kg (0.041lb) Units: mm (inches)

5.5 Specifications and Dimensional Drawings of Peripheral Devices

This section shows the specifications and dimensional drawings of the peripheral devices required for a Σ -Series servo system.

5.5.1 Cable Specifications and Peripheral Devices

The cable sizes and peripheral devices for SGDB SERVOPACKs are listed in the following tables.

The cable specifications were selected under conditions of three cables per bundle at an ambient temperature of 40°, with the rated current flowing.

IMPORTANT

Do not wire power lines and signal lines within the same duct, or bundle them together. Wire so that signals line are always kept apart from power lines by at least 30cm.

Use twisted pair or multi-core twisted pair shielded wires for signal lines and the encoder (PG) feedback line. The wiring length for reference input lines must be within 3m, and for the PG feedback line within 20m.

Cable Size

	cternal inal Name	SGDB Model				Cable	e Size			:
		Terminai Symbol	2BAD	3ZAD	3GAD	2BDD	3ZDD	3GDD	4EDD	5EDD
On-line Terminal	Main Circuit Power Input Terminal	L1/R, L2/S, L3/T, 🛖	HIV 30 or more	HIV 50 or more	HIV 60 or more	HIV 14 or more	HIV 14 or more	HIV 22 or more	HIV 30 or more	HIV 38 or more
	Motor Connection Terminal	U, V, W, 😩	HIV 38 or more	HIV 60 or more	HIV 80 or more	HIV 14 or more	HIV 22 or more	HIV 30 or more	HIV 38 or more	HIV 50 or more
	Control Power Input Terminal	L1r, L3/t	HIV 1.25	or more		······································	·			
	Regenerative Resistor Unit Connection Terminal	B1, B2	HIV 2.0 or more	HIV 3.5	or more	HIV 2.0	or more			HIV 3.5 or more
	Dynamic Brake Unit Connection	DU, DV, DW	HIV 1.25	or more						HIV 2.0 or more
	Terminal	DBON, DB24	HIV 1.25	or more		·				·
Off-line Terminal	Control I/O Signal Connector	1CN	Outside of	wisted pair limensions (for 1CN	of tinned	annealed o	copper twi	.12 mm ² o sted wires:	r more	· ·
	PG Signal Connector	2CN								

Note: 1. Cable size selection conditions: Ambient temperature 40°C, 3 wires per bundle, and rated current flowing

5.5.1 Cable Specifications and Peripheral Devices

- 2. For the main circuit, use cables with a dielectric strength of 600 V or more.
- 3. If the cables are laid in a duct (rigid PVC tube or metal pipe), allow for the reduced current rating applicable to the cables.
- 4. If the ambient temperature (inside the control panel) is high, cables sheathed with ordinary vinyl will be easily subjected to heat deterioration and become unusable in a short period of time. To prevent this, always use heat-resistant cables.

The types of cable are shown in the table below. Use it in combination with the tables.

	Cable Type	Conductor Allowable		
Symbol	Name	Temperature °C		
PVC	Normal vinyl cable			
IV	600 V vinyl cable	60		
HIV	Temperature-resistant vinyl cable	75		

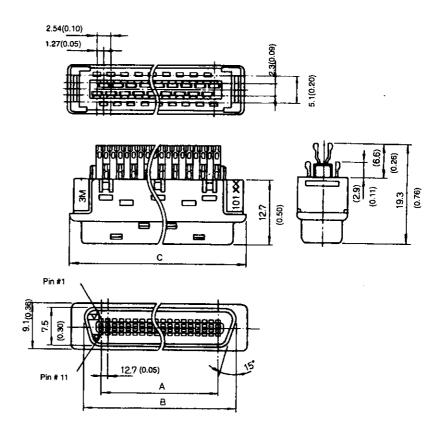
- Note: 1. Use cable with 600 V min. rating for main circuits.
 - 2. Consider allowable current reduction ratio if cables are bundled in PVC or metal ducts.
 - 3. Use temperature-resistant cable under high ambient or panel temperature where normal vinyl cables rapidly deteriorate.

Peripheral Devices

SERVOPACK Model SGDB-	Motor Model SGMB-	Power Supply Capacity 4	MCCB or Fuse Capacity*1	Main Power Inrush Current (peak value)	Recommended Line Filter*2	Magnetic Contactor
2BAD	2BA□A	36.7 kVA	150 A	325 A	FN258L-130-35	HI-65E2 (135 A)
	2BA□B	1	}		1112002-150-55	111-03E2 (133 A)
3ZAD	3ZA□A	50.1 kVA	200 A	325 A	FN258L-180-07	HI-100E2
	3ZA□B		ĺ		111236L-160-07	(180 A)
3GAD 3GA□A		61.8 kVA	225 A	650 A	FN359P-250-99	HI-125E2
	3GA□B	1			1113371 -230-33	(220 A)
2BDD	2BA□D	36.7 kVA	100 A	162 A	FN258L-75-34	HI-50E (100 A)
	2BA□E	1			1112382-73-34	HI-30E (100 A)
·	3ZA□D	50.1 kVA	150 A	650 A	FN258L-100-35	HI-65E2 (135 A)
	3ZA□E					
3GDD	3GA□D	61.8 kVA	150 A	650 A	FN258L-130-35	HI-65E2 (135 A)
	3GA□E				1112302-130-33	HI-03E2 (135 A)
4EDD	4EA□D	75.2 kVA	225 A	1300 A	FN258L-180-07	HI-125E2
	4EA□E					(220 A)
SEDD	5EA□D	91.9 kVA	225 A	1300 A	FN258L-180-07	HI-125E2
	5EA□E				1123013-100-07	(220 A)

- * 1. Braking characteristics (at 25°C): 200% for 2 s min., 700% for 0.01 s min.
- * 2. Manufactured by SCHAFFNER.
- * 3. Manufactured by Yaskawa Controls Co., Ltd.
- * 4. The supply voltage capacity shown is the value for a rated load.

The appropriate cables for SERVOPACK connectors 1CN and 2CN are shown in the table below.

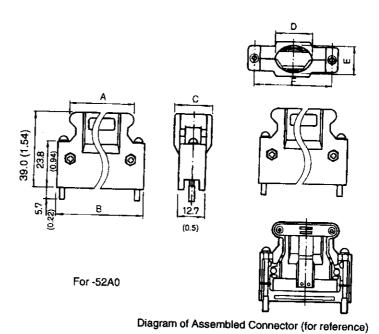

Control I/O Signal Connector	1CN	Cable	Use twisted-pair cable or twisted-pair shielded cable.
		Applicable Cable	AWG24,26,28,30
		Finished Cable Dimensions	Ø16.0 mm (Ø 0.63 in.) MAX.
PG Signal Connector	2CN	Cable	Use Yaskawa cable. Use twisted-pair shielded cable if Yaskawa cable is not used.
		Applicable Cable	Applicable cable types: AWG24, 26, 28, 30. However, use AWG22 for encoder power supply and FG line. Use AWG26 for other signals. These connections permit wiring distances up to 20 m (65.6 ft).
		Finished Cable Dimensions	Ø11.6 mm (Ø0.46 in.) MAX.

Note: Cable selection conditions: three cables per bundle at 40 °C ambient temperature, with the rated current flowing.

5.5.2 1CN Connector

This connector is required to connect the host controller to 1CN on the SERVOPACK.

• Connector


5.5.2 1CN Connector

Units: mm (inches)

Connector Model	Α	В	С
10150-3000VE	30.48 (1.20)	36.7 (1.44)	41.1 (1.62)

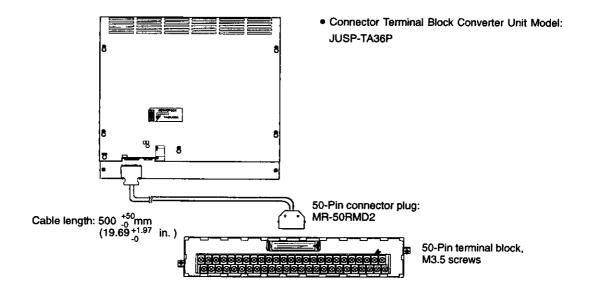
Manufactured by 3M.

Case

Connector Case Model A В C D Ę Model 10150-3000VE 10350-52A0-008 41.1 52.4 18.0 17.0 14.0 46.5 (1.62)(2.06)(0.71)(0.67)(0.55)(1.83)

Manufactured by 3M.

Units: mm (inches)


The 1CN connector model is shown below.

Connector Model	Application	Connector Part List				
		Connector		Case	ISE	
		Model	Qty	Model	Qtv	
DE9406970	I/O connector for 1CN	10150-3000VE*	1	10350-52A0-008*	1	

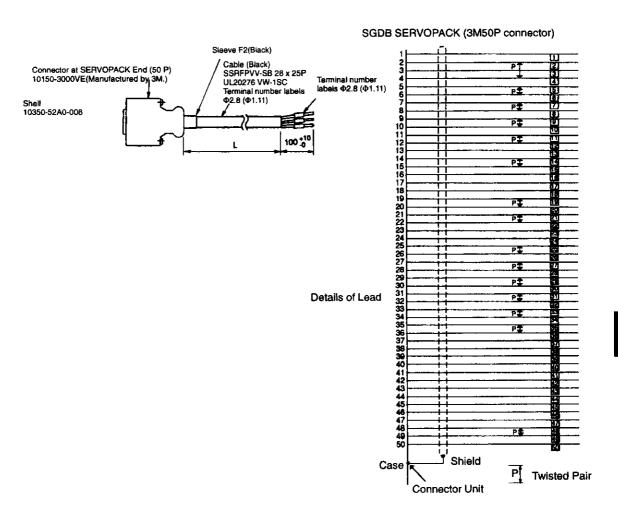
^{*} Manufactured by 3M.

5.5.3 Connector Terminal Block Converter Unit

A connector terminal block converter unit comprises a 1CN connector 0.5 m (1.64 ft) cable. The terminal block numbers match the SERVOPACK 1CN connector numbers.

■ Terminal Block Pin Numbers and Signal Names

The relationships between terminal block pin numbers and signal names are shown in the table below.

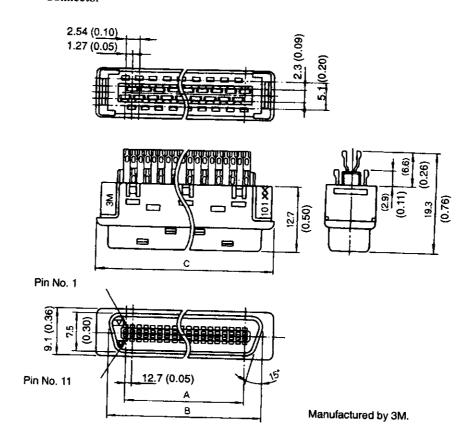

5.5.3 Connector Terminal Block Converter Unit

	HVOPACK		Termin	al block unit
Signal Name	1CN Pin No		Connector No.	Termin block N
SG	1	/ ``	- A1	1
SG	2	<u> </u>	B1	2
PL1	3		A2	3
SEN	4		- B2	4
V-REF	5		A3	5
SG	6	<u> </u>	B3	- 6
PULS		- -	- A4	7
/PULS	8	‡ P	- B4	8
T-REF	9		A5	9
SG	10	‡ P	B5	10
SIGN	11	<u> </u>	- A6	11
/SIGN	12	‡ P	- B6	├
PL2	13	<u> </u>	A7	12
/CLR	14		B7	13
CLR	15	‡ P		14
TOR-M	16		A8	15
VTG-M	17		B8	<u>16</u>
PL3	18		A9	17
PCO	19		B9	18_
			A10	19
/PCO BAT+	20		B10	
BAT-	21	‡₽	A11	21
+12 V	22		B11	
	23		A12_	23
-12 V	24	1	B12	24
V-CMP+	25	‡P	A13	25
V-CMP-	26		B13	<u> </u>
TGON+	27	‡P	A14	27
TGON-	28	_ <u> • • • • • • • • • • • • • • • • • • </u>	B14	28
S-RDY+	29	‡P	A15	29
S-RDY	30	<u> </u>	B15	30
ALM+	31	‡P	A16	31
ALM-	32	<u> </u>	B16	32
PAO	33	. ‡P	A17	33
/PAQ	34	<u> </u>	B17	34
РВО	35		A18	35
PBO	36	‡ P	B18	36
LO1	37	<u> </u>	A19	37
LO2	38		B19	38
ILO3	39		A20	39
S-ON	40	_ !	B20	40
P-CON	41	<u> </u>	A21	41
P-OT	42		B21	42
I-OT	43		A22	43
ALM-RST	44	+	B22	44
P-CL	45	<u> </u>	A23	45
N-CL	46		B23	45
24 V IN	47		A24	\
so	48			47
	48	‡ P	B24	48
PSO G	50		A25	49
Connector		-	B25	50

♣P : Twisted pair

5.5.4 Cable With 1CN Connector and One End Without Connector

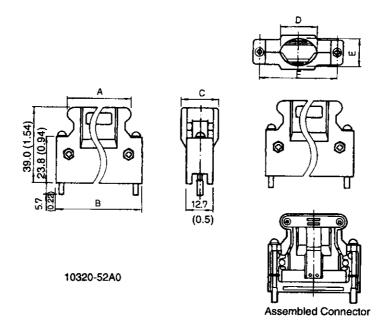
Use a cable with no connector at the host controller end. The loose wires are marked with labels with terminal numbers indicated.



Model	L in mm (feet)
DE9406969-1	$1000 + 30 \atop 0 \qquad (3.33 + 0.1)$
DE9406969-2	2000 + 50 (6.67 + 0.17)
DE9406969-3	3000 + 50 (10 + 0.17)

5.5.5 2CN Encoder Connector on SERVOPACK End

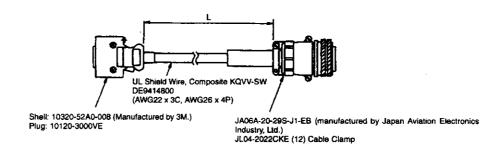
Only one type of 2CN encoder connector is available for the SERVOPACK end of the cable, as shown in the following diagram.


• Connector

Units: mm (inches)

10100 2000117		
10120-3000VE 11.43 (0.45)	17.6 (0.69)	22.0 (0.87)

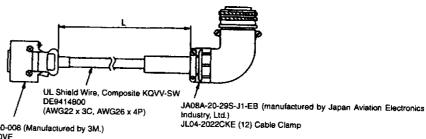
• Case


Units: mm (inches)

Connector Model	Case Model	A	В	С	Α	В	С
DE9406973	10320-52A0-008	22.0 (0.87)	33.3 (1.31)	14.0 (0.55)	12.0 (0.47)	10.0 (0.39)	27.4 (1.08)

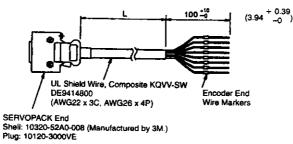
5.5.6 Encoder Cables

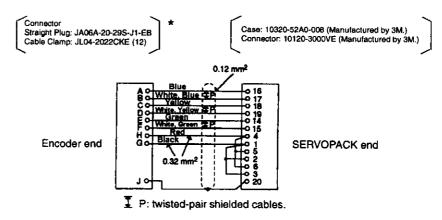
The dimensions and appearance of the encoder cables are shown below. Specify the cable type when ordering.


■ Cables for Incremental Encoder (with Straight Plug)

5.5.6 Encoder Cables

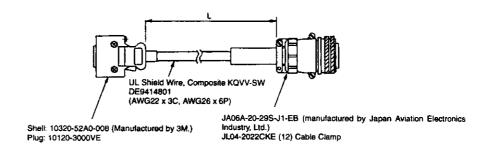
Model	L in mm (feet)
JZSP-VBP01-03	3000 + 100 (10 + 0.33)
JZSP-VBP01-05	5000 + 100 (16.7 + 0.33)
JZSP-VBP01-10	10000 + 500 (33.3 + 1.67)
JZSP-VBP01-15	$15000 + 500 \atop 0 \qquad (50 + 1.67 \atop 0)$
JZSP-VBP01-20	20000 + 500 (66.7 + 1.67)


■ Cables for Incremental Encoder (with L-shaped Plug)

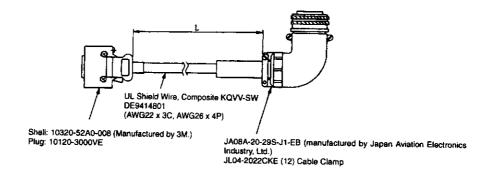

Shell: 10320-52A0-008 (Manufactured by 3M.) Plug: 10120-3000VE

Model	L in mm (feet)
JZSP-VBP02-03	3000 + 100 (10 + 0.33)
JZSP-VBP02-05	5000 + 100 (16.7 + 0.33)
JZSP-VBP02-10	$10000 + 500 \atop 0 \qquad (33.3 + 1.67)$
JZSP-VBP02-15	$15000 + 500 \atop 0 \qquad (50 + 1.67 \atop 0)$
JZSP-VBP02-20	20000 + 500 (66.7 + 1.67)

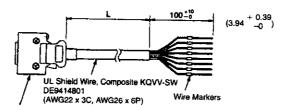
Cables for Incremental Encoder (without Connector on Encoder End)



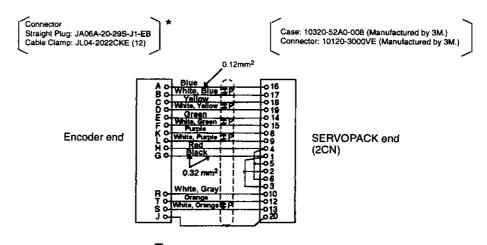
L in mm (feet)
$3000 + 100 \ (10 + 0.33)$
$5000 + 100 \atop 0 \qquad (16.7 + 0.33)$
$10000 + 500 \atop 0 \qquad (33.3 + 1.67 \atop 0)$
$15000 + 500 \atop 0 \qquad (50 + 1.67 \atop 0)$
20000 + 500 (66.7 + 1.67)


^{*} Purchase cases and connectors separately.

■ Cables for Absolute Encoder (with Straight Plug)


Model	L in mm (feet)
JZSP-VBP11-03	3000 + 100 (10 + 0.33)
JZSP-VBP11-05	5000 + 100 (16.7 + 0.33)
JZSP-VBP11-10	10000 + 500 (33.3 + 1.67)
JZSP-VBP11-15	15000 + 500 (50 + 1.67)
JZSP-VBP11-20	20000 + 500 (66.7 + 1.67)

Cables for Absolute Encoder (with L-shaped Plug)


Model	L in mm (feet)
JZSP-VBP12-03	3000 + 100 (10 + 0.33)
JZSP-VBP12-05	5000 + 100 (16.7 + 0.33)
JZSP-VBP12-10	$10000 + 500 \atop 0 \qquad (33.3 + 1.67)$
JZSP-VBP12-15	$15000 + 500 \atop 0 \qquad (50 + 1.67 \atop 0)$
JZSP-VBP12-20	20000 + 500 (66.7 + 1.67)

Cables for Absolute Encoder (without Connector on Encoder End)

Shell: 10320-52A0-008 (Manufactured by 3M.) Plug: 10120-3000VE

Model	L in mm (feet)	
JZSP-VBP10-03	3000 + 100 0 (10 + 0.33 0 (10 + 0.33)	
JZSP-VBP10-05	5000 + 100 (16.7 + 0.33)	
JZSP-VBP10-10	$10000 + 500 \atop 0 \qquad (33.3 + 1.67)$	
JZSP-VBP10-15	$15000 + 500 \atop 0 \qquad (50 + 1.67 \atop 0)$	
JZSP-VBP10-20	20000 + 500 (66.7 + 1.67)	

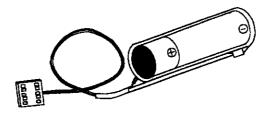
 $\overline{\mathbf{I}}$ P: twisted-pair shielded cables.

^{*} Purchase cases and connectors separately.

5.5.7 Battery for Absolute Encoder

Details of the encoder cables are summarized in the table below.

These cables are not supplied as accessories with a SERVOPACK or servomotor.


Purchase in standard specified lengths as required.

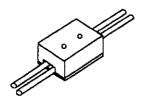
Cable Specification	Incremental Encoder (Yaskawa Drg. DE9414800)	Absolute Encoder (Yaskawa Drg. DE9414801)	
Basic Specifications	Compound KQVV-SW AWG22 x 3C, AWG26 x 4P	Compound KQVV-SW AWG22 x 3C, AWG26 x 6P	
Finished Dimension	Ø9.9 mm (Ø0.30)	Ø10.7 mm (Ø0.31)	
Internal Structure and Lead Colors	A ₁ Red A ₂ Black A ₃ Green/Yellow F ₁ Blue - White/Blue (Twisted pair) F ₂ Yellow - White/Yellow (Twisted Pair) F ₃ Green - White/Green (Twisted Pair) F ₄ Orange - White/Orange (Twisted Pair)	A1 Red A2 Black A3 Green/Yellow B1 Blue - White/Blue (Twisted pair) B2 Yellow - White/Yellow (Twisted Pair) B4 Orange - White/Orange (Twisted Pair) B5 Purple - White/Purple (Twisted Pair) B6 Grey - White/Grey (Twisted Pair)	
Yaskawa standard	Standard lengths:		
specifications	3 m (9.8), 5 m (16.4), 10 m (32.8), 15 m (49.2), 20 m (65.6) *		

^{*} When the appropriate cable is used, the allowable wiring distance between the SERVOPACK and servomotor (PG) is 20 m (65.6) max.

5.5.7 Battery for Absolute Encoder

Purchase the following battery if using an absolute encoder. (Manufactured by Toshiba Battery Co., Ltd.)

• Lithium Battery: ER 6 V C3


• Nominal Voltage: 3.6 V

• Standard Capacity: 2000 mAh

5.5.8 Brake Power Supply

Brake power supplies are available for 200 V and 100 V input.

200 VAC Input: LPSE-2H01 100 VAC Input: LPDE-1H01

Use for servomotor with brake.

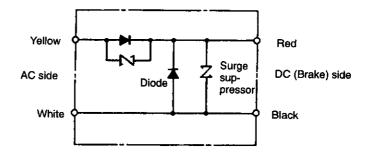
Dimensional Drawings

• Lead Wire Length: 500 mm each (19.69 in.)

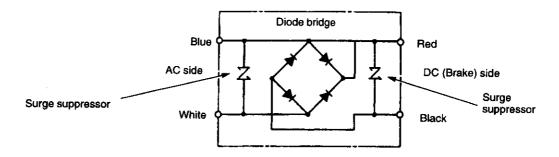
Max. Ambient Temperature: 60°C

• Lead Wires: Color Code

	Brake	
100V	200V	
Blue/White	Yellow/White	Red/Black

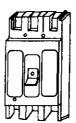

IMPORTANT

The internal circuits are shown below. While it is possible to switch either the AC or DC side of the brake power supply, it is normally safer to switch the AC side. If the DC side is to be switched, install a surge suppressor near the brake coil to prevent the surge voltages due to switching the DC side damaging the brake coil. Brake operation time delay occurs during brake power supply ON/OFF operation. Set output timing of servo OFF operation (motor output stop), referring to 3.4.4 Using Holding Brake.


Especially, if the AC side of the brake power supply is to be switched, brake operation time is extended.

5.5.9 Circuit Breaker

• Internal Circuit for 200 VAC Input (LPSE-2H01)



• Internal Circuit for 100 VAC Input (LPDE-1H01)

5.5.9 Circuit Breaker

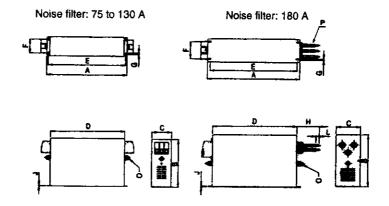
The customer should purchase a circuit breaker (MCCB) of appropriate capacity.

Recommended Product

Ground fault detector for motor protection manufactured by Mitsubishi Electric Co. Ltd. Model: MN50-CF

Use to protect the power lines.

SERVOPACK Model	Power Supply Capacity per SERVOPACK (kVA)	Power Supply Capacity per MCCB or Fuse (A)
SGDB-2BAD	36.7	150
SGDB-3ZAD	50.1	200
SGDB-3GAD	61.8	225
SGDB-2BDD	36.7	100
SGDB-3ZDD	50.1	150
SGDB-3GDD	61.8	150
SGDB-4EDD	75.2	225
SGDB-5EDD	91.9	225

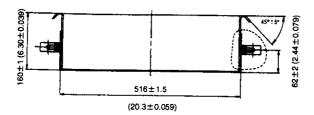

5

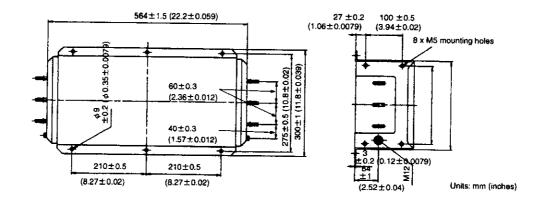
5.5.10 Noise Filter

Select the noise filter from the following list according to the SERVOPACK capacity. Section 5.5.1 Cable Specifications and Peripheral Devices provides a summary list showing the relationship between SERVOPACK capacity and noise filter model.

SERVOPACK Model	Noise Filter Reference Diagram	Recommended Noise Filter*
SGDB-2BAD		FN258L-130-35
SGDB-3ZAD	Correct	FN258L-180-07
SGDB-3GAD		FN359P-250-99
SGDB-2BDD	<u> </u>	FN258L-75-34
SGDB-3ZDD	Incorrect	FN258L-100-35
SGDB-3GDD	 0	FN258L-130-35
SGDB-4EDD	† †	FN258L-180-07
SGDB-5EDD	- -	FN258L-180-07

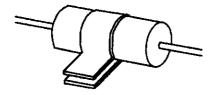
- * Manufactured by SCHAFFNER.
- Dimensional Diagrams
 - FN258L




5.5.11 Surge Suppressor

Units: mm (inches)

Noise Filter Model	A	В	С	D	E	F	G	Н	J	L	0	P
FN258L-75-34	329 (13.0)	220 (8.66)	80 (3.15)	300 (11.8)	314 (12.36)	55 (2.17)	6.5 (0.26)	_	1.5 (0.059)	-	M6	_
FN258L-100-35	379±1.5 (14.91± 0.059)	220 (8.66)	90±0.8 (3.54± 0.031)	350±1.2 (13.8± 0.047	364 (14.3)	65 (2.56)	6.5 (0.26)	_	1.5 (0.059)		M10	_
FN258L-130-35	439±1.5 (17.26± 0.059)	240 (9.44)	110±0.8 (4.33± 0.031)	400±1.2 (15.7± 0.047)	414 (16.3)	80 (3.15)	6.5 (0.26)	_	3 (0.12)	_	M10	_
FN258L-180-07	438±1.5 (17.23± 0.059)	240 (9.44)	110±0.8 (4.33± 0.031)	400±1.2 (15.7± 0.047)	413 (16.3)	80 (3.15)	6.5 (0.26)	500 (19.7)	4 (0.16)	15 (0.59)	M10	50 (mm ²)


• FN359

5.5.11 Surge Suppressor

Attach a surge suppressor to the magnetic contactor to prevent power supply noise and protect contacts.

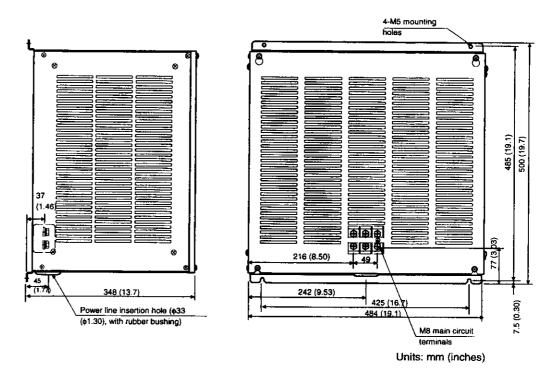
• Recommended Product

Spark Killer manufactured by Okaya Electric Industries Co., Ltd.

Model: CR50500BA (250 VAC) Capacitance: 0.5 μ F \pm 20% Resistance: 50 Ω (1/2 W) \pm 30%

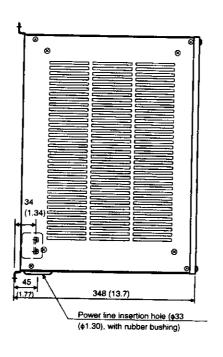
5.5.12 Regenerative Resistor Unit

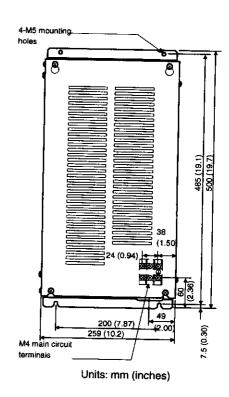
Externally attach a regenerative resistor to the SERVOPACK. This resistor is used for dissipating regenerative energy.

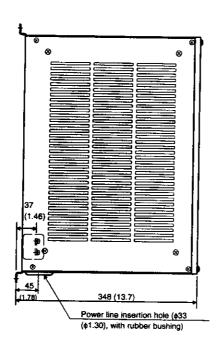

■ Specifications

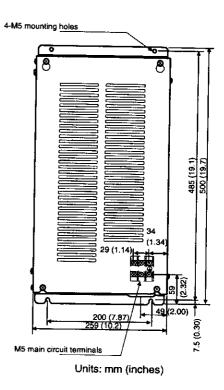
Use one of the following Regenerative Resistor Units according to the SERVOPACK model:

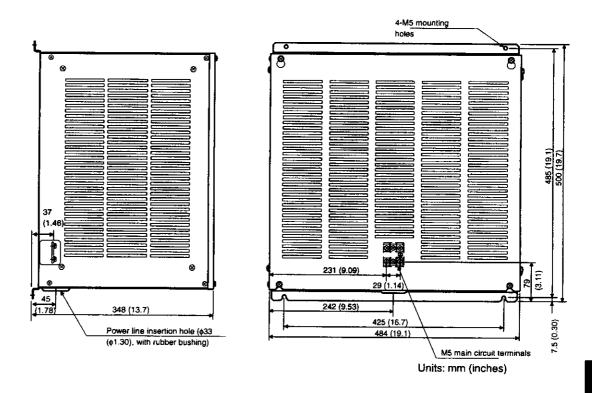
SGDB SERVO- PACK Model	2BAD	3ZAD	3GAD	2BDD	3ZDD	3GDD	4EDD	5EDD
Regenerative Resistor Unit	JUSP- RA08	JUSP- RA09	JUSP- RA11	JUSP- RA12	JUSP- RA13	JUSP- RA14	JUSP- RA15	JUSP- RA16
Resistance	2.4 Ω	1.8 Ω	1.6 Ω	9Ω	6.7 Ω	5Ω	4Ω	3.8 Ω
Resistance Capacity	2400 W	4800 W	4800 W	3600 W	3600 W	4800 W	6000 W	7200 W
Allowable Load Moment of Inertia	5 times the load moment of inertia at motor shaft.							
Allowable Duty	2% ED at	t maximun	n speed an	d torque de	eceleration			


Dimensional Drawings

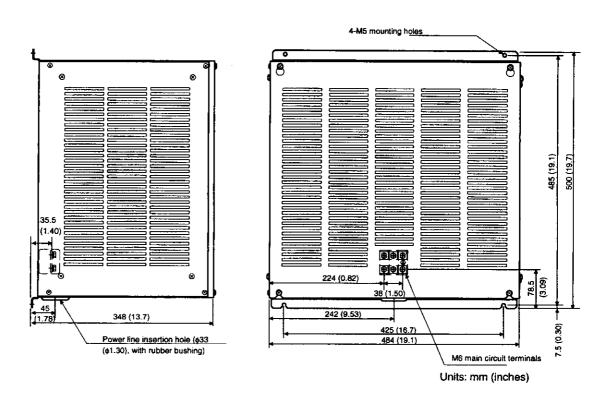

• JUSP-RA11 Regenerative Resistor Unit


5.5.12 Regenerative Resistor Unit

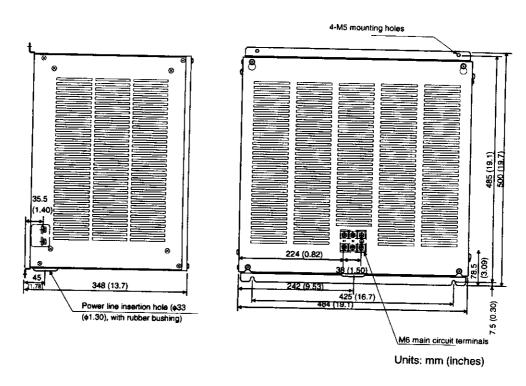

• JUSP-RA12 Regenerative Resistor Unit



• JUSP-RA13 Regenerative Resistor Unit



• JUSP-RA14 Regenerative Resistor Unit



• JUSP-RA15 Regenerative Resistor Unit


5.5.12 Regenerative Resistor Unit

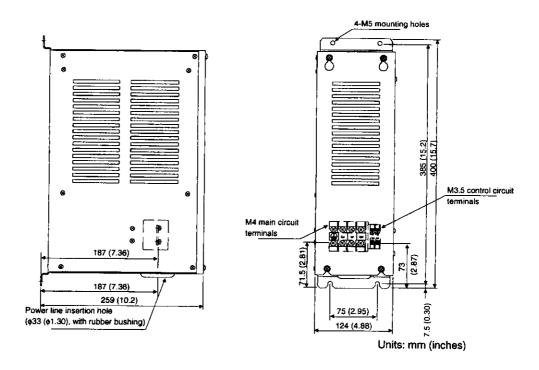
• JUSP-RA16 Regenerative Resistor Unit

Connections

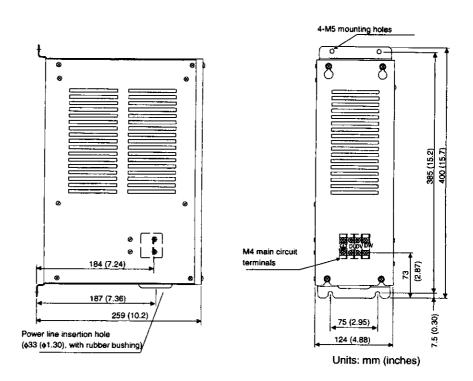
Connect the Regenerative Resistor Unit to the SERVOPACK as shown in the following diagram.

5.5.13 Dynamic Brake (DB) Unit

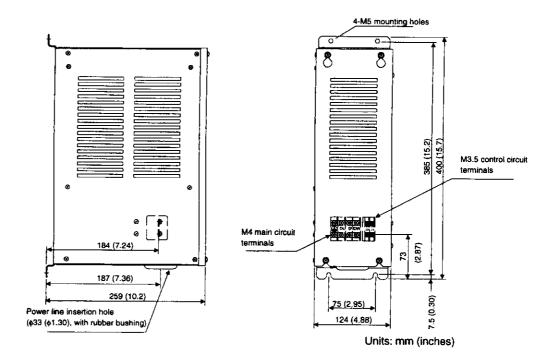
Externally attach a dynamic brake resistor to the SERVOPACK to dissipate regenerative energy when using the dynamic brake function. The dynamic brake resistor does not need to be installed if the dynamic brake function is not required.

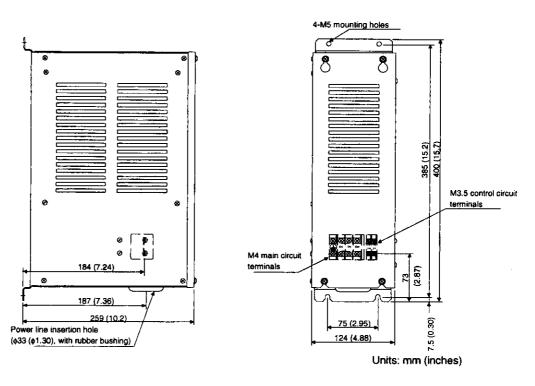

Specifications

Select one of the following Dynamic Brake Units according to the SERVOPACK being used.

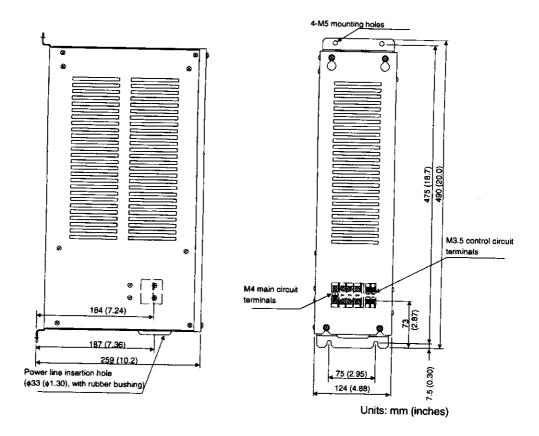

Dynamic Brake (DB) Unit Model	SGDB SERVO- PACK Model	Resistance Specifications	DB Contactor and Surge Absorption Unit
JUSP-DB01	2BAD, 3ZAD	180 W 0.3 Ω	Built into SERVO- PACK
JUSP-DB02	3GAD	180 W 0.3 Ω	Built into Dynamic Brake Unit
JUSP-DB03	2BDD, 3ZDD	180 W 0.8 Ω	Built into SERVO- PACK
JUSP-DB04	3GDD	180 W 0.8 Ω	Built into Dynamic Brake Unit
JUSP-DB05	4EDD	180 W 0.8 Ω	Built into Dynamic Brake Unit
JUSP-DB06	5EDD	300 W 0.8 Ω	Built into Dynamic Brake Unit

Dimensional Drawings


• JUSP-DB02 Dynamic Brake Unit


• JUSP-DB03 Dynamic Brake Unit

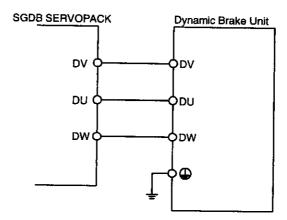
• JUSP-DB04 Dynamic Brake Unit



• JUSP-DB05 Dynamic Brake Unit

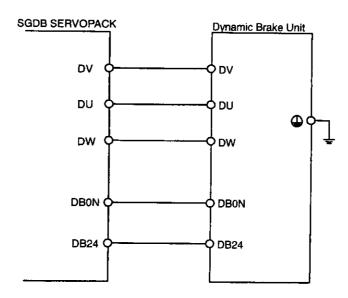
5.5.13 Dynamic Brake (DB) Unit

• JUSP-DB06 Dynamic Brake Unit



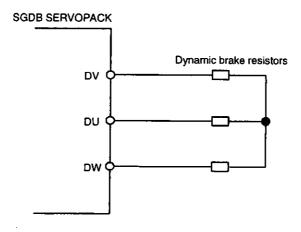
Connections

Using a Yaskawa Dynamic Brake Unit


SGDB-2BAD, 3ZAD, 2BDD, and 3ZDD SERVOPACKs

The dynamic brake contactor and Surge Absorption Unit are built into the SERVOPACK. Connect the DU, DV, and DW terminals and the Frame Ground on the Dynamic Brake Unit, as shown in the following diagram.

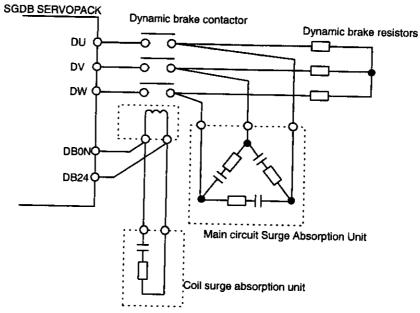
SGDB-3GAD, 3GDD, 4EDD, and 5EDD SERVOPACKs


The dynamic brake contactor and Surge Absorption Unit are built into the Dynamic Brake Unit. Connect the DU, DV, and DW terminals and the Frame Ground on the Dynamic Brake Unit, and also connect the terminals DBON and DB24 for dynamic brake contactor control, as shown in the following diagram.

Using Dynamic Brake Units Prepared by the Customer

SGDB-2BAD, 3ZAD, 2BDD, and 3ZDD SERVOPACKs

The dynamic brake contactor and Surge Absorption Unit are built into the SERVOPACK. Connect the dynamic brake resistors only, as shown in the following diagram.


Note: Connect dynamic brake resistors with the following resistance specifications.

200-V SERVOPACKs: Higher than 0.3 Ω , 180 W 400-V SERVOPACKs: Higher than 0.8 Ω , 180 W

5.5.13 Dynamic Brake (DB) Unit

SGDB-3GAD, 3GDD, 4EDD, and 5EDD SERVOPACKs

Connect a dynamic brake contactor and Surge Absorption Unit, as shown in the following diagram.

Note: Connect dynamic brake resistors with the following resistance specifications.

200-V SERVOPACKs: Higher than 0.3 Ω , 180 W

400-V SERVOPACKs: Higher than 0.8 Ω , 180 W (37 kW, 45 kW)

Higher than 0.8 Ω , 300 W (55 kW)

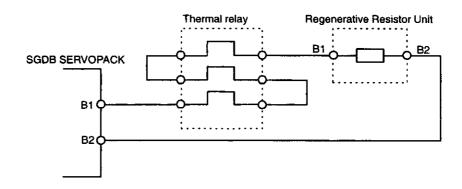
Use the following dynamic brake contactor and Surge Absorption Unit. The main circuit Surge Absorption Unit is available as a side-connection type or a front-connection type.

Name		Model	Manufacturer
Contactor		SC-4-1/G 24-VDC coil	Fuji Electric Co., Ltd.
Main Circuit Surge Absorption Unit	Front Connection	SZ-ZM1	
	Side Connection	SZ-ZM2	
Coil Surge Absorption Unit		SZ-Z4	\rightarrow

5.5.14 Thermal Relays

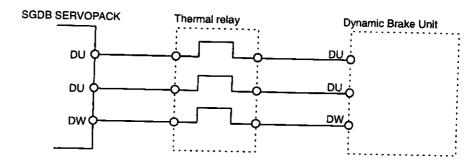
Connect a thermal relay to the SERVOPACK to protect the regenerative resistor and dynamic brake resistor from heat damage when operating under extreme conditions.

Recommended Thermal Relay Models


Select the appropriate thermal relay from the following list when using Yaskawa Regenerative Resistor Units and Dynamic Brake Units.

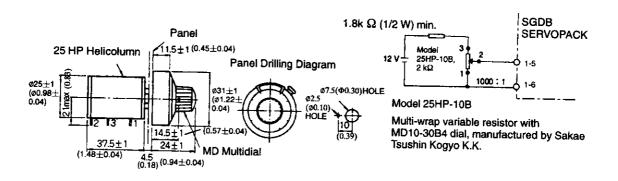
Dynamic Brake (DB) Unit and Regenerative Resistor Unit Model	Therr Relay M		Thermal Relay Current Range	Thermal Relay Current	Manufacturer
JUSP-DB01 JUSP-DB02	TR-3N/3	9 A	9 to 13 A	10 A	Fuji Electric Co., Ltd.
JUSP-DB03 JUSP-DB04 JUSP-DB05	TR-3N/3	7 A	7 to 11 A	7 A	
JUSP-DB06	TR-3N/3	7 A	7 to 11 A	9 A	
JUSP-RA08	TR-3N/3	12 A	12 to 18 A	14 A	•
JUSP-RA09	TR-3N/3	18 A	18 to 26 A	23 A	1
JUSP-RA11	TR-3N/3	18 A	18 to 26 A	24 A	
JUSP-RA12	TR-3N/3	7 A	7 to 11 A	9 A	
JUSP-RA13	TR-3N/3	9 A	9 to 13 A	10 A	
JUSP-RA14	TR-3N/3	12 A	12 to 18 A	14 A	1
JUSP-RA15	TR-3N/3	12 A	12 to 18 A	17 A	
JUSP-RA16	TR-3N/3	18 A	18 to 26 A	19 A	1

■ Connections

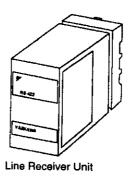

Connect the thermal relay as shown in the following diagram.

• Connecting to a Regenerative Resistor Unit

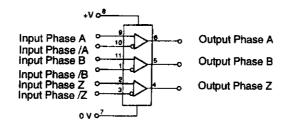
5.5.16 Encoder Signal Converter Unit


Connecting to a Dynamic Brake Unit

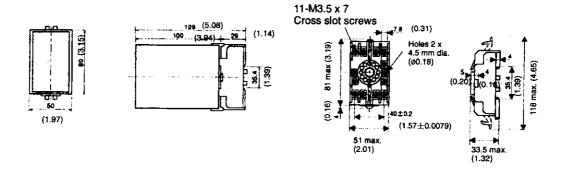
5.5.15 Variable Resistor for Speed Setting


This variable resistor is used to give speed references by applying the speed reference voltage from an external power supply across 1CN pins #5 and #6.

Dimensional Drawings



5.5.16 Encoder Signal Converter Unit

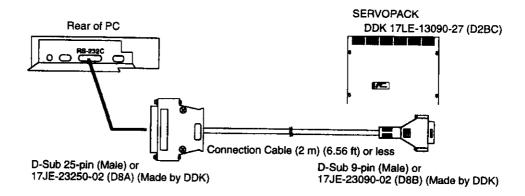

Unit to convert the encoder signal output from the line driver to an open collector output or voltage pulse output.

Terminal Numbers

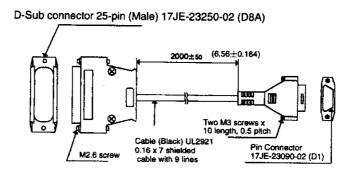
■ Dimensional Drawings

■ Specifications

The encoder signal converter unit specifications are as follows:


Model	Receiver Unit							
Spec.	LRX-01/A1	LRX-01/A2	LRX-01/A3	LRX-01/A4				
Power Supply	12 VDC ± 10%	, 100 mA	5 VDC ± 5%, 1	00 mA				
Input Signals	Balanced line dr	iver input (RS-422)						
Output Signals Voltage pulse output		Open collector output	Voltage pulse output	Open collector output				
Input Signal Level	Voltage different	Voltage differential ≥ 0.3 V, internal termination resistance 100Ω						
Output Signal Level	H: 10 V min. (1 mA) L: 0.5 V max. (30 mA)	L: 0.5 V max. (30 mA) Withstand voltage: 50 V	H: 3 V min. (1 mA) L: 0.5 V max. (30 mA)	L: 0.5 V max. (30 mA) Withstand voltage: 50 V				
Operating Ambient Temperature Range	0 to +60°C							
IC Used	AM26LS32C Re	ceiver IC, or equiva	lent					

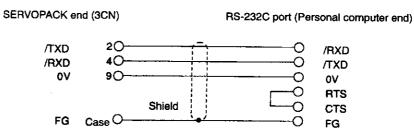
5.5.17 Cables for Connecting PC and SERVOPACK


5.5.17 Cables for Connecting PC and SERVOPACK

Special cables for connecting a PC to a SERVOPACK. Using these cables allows monitoring and setting of parameters with a PC.

PC software is available for these communications. Ask your Yaskawa representative for details. Operate the software as described in the manual supplied.

■ Dimensional Drawings for Model DE9405258 (for NEC PC)

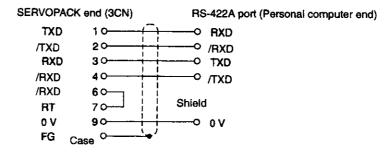


Note: Fold the cable shielding back at each end of the cable and secure it with clamps.

Communications Specifications and Connecting-circuit Specifications

• Baud Rate: 9600 bps Number of Bits Start: 1 bit Data: 7 bits Stop: 1 bit Parity: 1 bit (even) Synchronization Start-Stop XON/XOFF Control None • Shift Control: None

• Communications Method: Semi-duplex



Note: Maximum cable length is 2 m (6.56 ft).

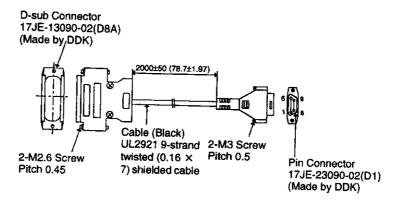
Connection is also possible to the RS-422A port. In this case, the connection circuit is as follows:

• Transmission Distance: 30 m (98.4 ft) max.

• Transmission System: RS-422A

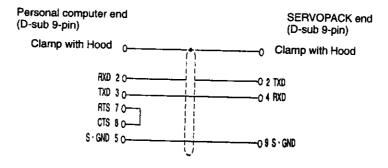
Terminal Arrangement at SERVOPACK End

Pin #	Signal Name	Signal Circuit Name	Signal Direction
1	TXD	Transmit data (not inverted)	P←S
2	/TXD	Transmit data (inverted)	P←S
3	RXD	Receive data (not inverted)	P→S
4	/RXD	Receive data (inverted)	P→S
5	ОРН	_	#
6	/RXD	Shorting pins 6 and 7 inserts 220 Ω to	ermination resistance
7	RT	between RXD and /RXD.	
8	5VPP	_	#
9	GND	Signal ground 0 V	-


P: Personal computer
S: SERVOPACK
#: Terminal not used, leave open.

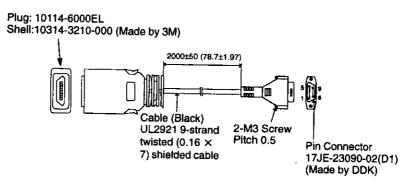
5.5.17 Cables for Connecting PC and SERVOPACK

Cable for Connecting SERVOPACK and IBM PC (IBM or Compatible PC)

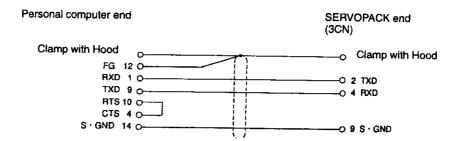

Use Yaskawa DE9408565 Cable.

Dimensional Drawings: Model DE9408565

Note: Fold back the cable shielding at each end of the cable and secure it with clamp.


• Connection

Cable for Connecting SERVOPACK and NEC PC-98 Half-pitch Connector


Use Yaskawa DE9408564 Cable.

Dimensional Drawings: Model DE9408564

Note: Fold back the cable shielding at each end of the cable and secure it with clamp.

• Connection

6

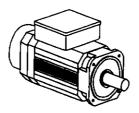
INSPECTION, MAINTENANCE, AND TROUBLESHOOTING

This chapter describes the basic inspections and maintenance to be carried out by the customer.

In addition, troubleshooting procedures are described for problems which cause an alarm display and for problems which result in no alarm display.

6.1	Inspection and Maintenance	6 - 2
	6.1.1 Servomotor	6 - 2
	6.1.2 SERVOPACK	6 - 3
	6.1.3 Replacing Battery for Absolute Encoder	6 - 4
6.2	Troubleshooting	6 - 5
	6.2.1 Troubleshooting Problems with Alarm Display	6 - 5
	6.2.2 Troubleshooting Problems With No Alarm Display	6 - 28
	6.2.3 Internal Connection Diagram and Instrument	
	Connection Examples	6 - 30

6.1.1 Servomotor


6.1 Inspection and Maintenance

This section describes the basic inspections and maintenance for Σ -Series servo drives.

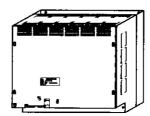
6.1.1 Servomotor

For inspection and maintenance of servomotors, follow the simple, daily inspection procedures in the table below.

The AC servomotors are brushless. Simple, daily inspection is sufficient. The inspection and maintenance frequencies in the table are only guidelines. Increase or decrease the frequency to suit the operating conditions and environment.

Item	Frequency	Procedure	Comments
Vibration and noise	Daily	Touch and listen.	Levels higher than normal?
Appearance	According to degree of contamination	Clean with cloth or compressed air.	
Insulation resistance measurement	At least once a year	Disconnect SERVOPACK and test insulation resistance at 500 V. Must exceed 10 MΩ (See note below)	Contact your Yaskawa representative if the insulation resistance is below 10 MΩ.
Replace oil seal	At least once every 5,000 hours	Remove servomotor from machine and replace oil seal.	Applies only to motors with oil seal.
Overhaul	At least once every 20,000 hours or 5 years	Contact your Yaskawa representative.	The customer should not disassemble and clean the servomotor.

Note: Measure across the servomotor FG and the U-phase, V-phase, or W-phase power lead.


During inspection and maintenance, do not disassemble the servomotor.

If disassembly of the servomotor is required, contact your Yaskawa representative.

6.1.2 SERVOPACK

For inspection and maintenance of the SERVOPACK, follow the inspection procedures in the table below at least once every year.

The SERVOPACK contains highly reliable parts and daily inspection is not required. Carry out the inspections and maintenance in the table below once every year.

Item Frequer		Procedure	Remedy	
Clean unit interior and circuit boards	At least once a year	Check for dust, dirt, and oil on the surfaces.	Clean with compressed air.	
Loose screws At least once a year		Check for loose terminal block and connector screws.	Tighten any loose screws.	
Defective parts in unit or on circuit boards.	At least once a year	Check for discoloration, damage or discontinuities due to heating.	Contact your Yaskawa representative.	

Part Replacement Schedule

The following parts are subject to mechanical wear or deterioration over time. To avoid failure, replace these parts at the frequency indicated.

Part	Standard Replacement Period	Replacement Method
Cooling fan	4 to 5 years	Replace with new part.
Smoothing Capacitor	7 to 8 years	Test. Replace with new part if necessary.
Relays	-	Test. Replace if necessary.
Fuse	10 years	Replace with new part.
Aluminum Electrolytic Capacitor on Circuit Board	5 years	Test. Replace with new circuit board if necessary.

Operating Conditions:

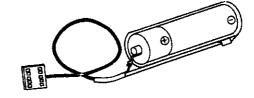
Ambient Temperature: annual average 30°C

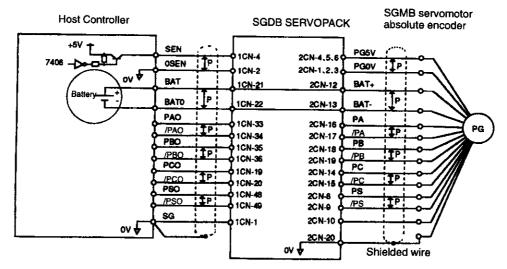
· Load Factor: 80% max.

· Operation Rate: 20 hours/day max.

If the SERVOPACK has been already overhauled at YASKAWA, its parameters are set back to the standard settings on shipment. Always check the parameters before operating the motor.

6.1.3 Replacing Battery for Absolute Encoder


6.1.3 Replacing Battery for Absolute Encoder


Battery replacement is only required for servo systems using an absolute encoder.

The battery model recommended below (purchased by the customer) is installed in the host controller to allow the absolute encoder to store position data when the power is turned OFF.

Recommended Battery:

Lithium Battery
 ER 6 V C3, manufactured by Toshiba Battery Co., Ltd. 3.6 V, 2000 mAh
 Estimated Life: Approximately 10 years

Note: PS, PSO signals are used only for 12 bit absolute encoder.

The battery voltage is not internally monitored in the SERVOPACK. Therefore, detect low battery voltage at the host controller.

Minimum required battery voltage is 2.8 V.

Replace the battery according to the following procedure if the battery voltage drops to the minimum required battery voltage. The battery maintains absolute position data stored in the encoder.

Battery Replacement Procedure:

- 1. Turn ON the SERVOPACK and wait at least 3 minutes. The absolute encoder capacitors are charged.
- Replace the battery in the host controller. The SERVOPACK power supply can be ON or OFF during battery replacement.

After completing step 1 above, the absolute encoder will function normally for up to 2 days with no battery.

6.2 Troubleshooting

This section describes causes and remedies for problems which cause an alarm display and for problems which result in no alarm display.

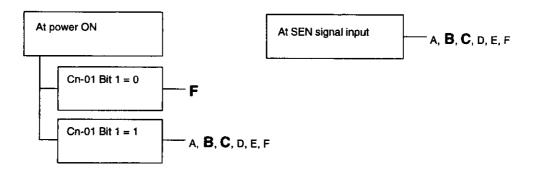
6.2.1 Troubleshooting Problems with Alarm Display

Refer to the tables below to identify the cause of a problem which causes an alarm display and take the remedy described.

Note that A.99 does not indicate an alarm.

Contact your Yaskawa representative if the problem cannot be solved by the described procedures.

Alarm Display and Troubleshooting Table


Display and Outputs

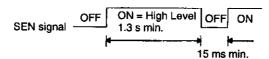
Digital Operator Display and Alarm Name	Alarm Output			
	Alarm Code Output			Alarm Output
	ALO1	ALO2	ALO3	–
A.00 Absolute data error	OFF	OFF	OFF	OFF

OFF: Output transistor is OFF ON: Output transistor is ON

Status When Alarm Occurred

The letters A to F in the diagram indicate the causes in the following table. The letters for the main causes are given in bold.

6.2.1 Troubleshooting Problems with Alarm Display


	Cause	Remedy
A	Absolute encoder power not supplied from SERVOPACK.	Use the SERVOPACK power supply for the absolute encoder.
В	Incorrect absolute encoder wiring (PA, PB, RESET, SEN signal etc.).	Check and correct the absolute encoder wiring.
С	Absolute encoder malfunctioned.	• If Cn-01 Bit 1 = 0, turn SEN signal OFF and back ON. (See note on page.)
		• If Cn-01 Bit 1 = 1, turn SERVOPACK power OFF and back ON.
D	Incorrect parameter setting. Incremental encoder used with Cn-01 Bit E set to 1.	Set Cn-01 Bit E to 0.
Е	Absolute encoder defective.	Replace servomotor.
F	Circuit board (1PWB) defective.	Replace SERVOPACK.

Note: Alarm A.00 is reset when the power is turned OFF and back ON. It is not reset by the normal alarm reset.

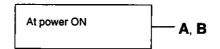
Resetting SEN Signal

When resetting the SEN signal (i.e., turning it OFF and then back ON) for any reason, keep the SEN signal at the high level for more than 1.3 s before turning it OFF.

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output				
	Alarm Code Output			Alarm Output	
	ALO1	ALO2	ALO3		
A.02 Parameters breakdown	OFF	OFF	OFF	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON

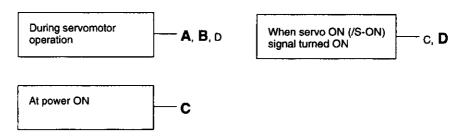

	Cause	Remedy
A	Power turned OFF during parameter write. Alarm occurred next power ON.	Replace SERVOPACK.
В	Circuit board (1PWB) defective.	Replace SERVOPACK.

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output				
	Alarm Code Output			Alarm Output	
	ALO1	ALO2	ALO3	1	
A.04 Parameter setting error	OFF	OFF	OFF	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON

Status When Alarm Occurred

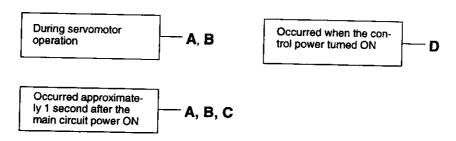


	Cause	Remedy
Α	An out-of-range parameter was previously set or loaded.	Reset all parameters in range. Otherwise, re-load correct parameters.
В	Circuit board (1PWB) defective.	Replace SERVOPACK.

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output			
	Alarm Code Output			Alarm Output
	ALO1	ALO2	ALO3	
A.10 Overcurrent	ON	OFF	OFF	OFF

OFF: Output transistor is OFF ON: Output transistor is ON

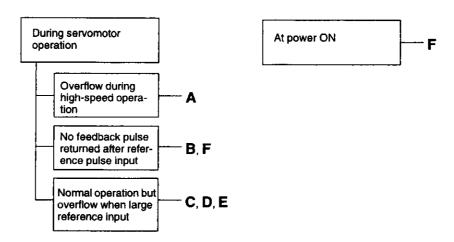

	Cause	Remedy
Α	Wiring grounded between SERVOPACK and servomotor.	Check and correct wiring.
В	Servomotor phase U, V, or W grounded.	Replace servomotor.
С	Circuit board (1PWB) defective. Power transistor defective.	Replace SERVOPACK.
D	Current feedback circuit, power transistor, DB circuit, or circuit board defective.	Replace SERVOPACK.

6.2.1 Troubleshooting Problems with Alarm Display

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output			
	Alarm Code Output			Alarm Output
	ALO1	ALO2	ALO3	
A.30 Regenerative error detection	ON	ON	OFF	OFF

OFF: Output transistor is OFF ON: Output transistor is ON

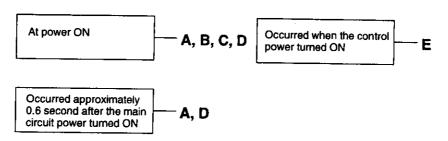


	Cause	Remedy
A	Regenerative transistor is abnormal.	Replace SERVOPACK.
В	Disconnection of the regenerative resistor unit.	Replace SERVOPACK or regenerative resistor unit.
С	Regenerative resistor unit disconnected (for more than 6.0 kW).	Check wiring of the regenerative resistor unit.
D	SERVOPACK defective.	Replace SERVOPACK.

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output			
	Alarm Code Output			Aiarm Output
	ALO1	ALO2	ALO3	
A.31 Position error pulse overflow	ON	ON	OFF	OFF

OFF: Output transistor is OFF ON: Output transistor is ON

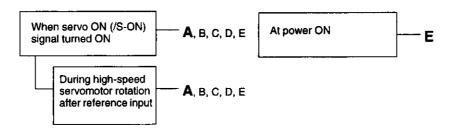

	Cause	Remedy
Α	Servomotor wiring incorrect.	Check and correct wiring. (Check phase-A,
В	Encoder wiring incorrect (disconnection, shortcircuit, power supply, etc.).	-B, -C pulses correct at 2CN.)
C	SERVOPACK adjustment incorrect.	Increase speed loop gain (Cn-04) and/or position loop gain (Cn-1A).
D	Servomotor overloaded.	Reduce load torque and inertia. Otherwise, replace with larger capacity servomotor.
Е	Position reference pulse frequency too high.	Decrease reference pulse frequency.
		Use smoothing function.
		Change electronic gear ratio.
F	Circuit board (1PWB) defective.	Replace SERVOPACK.

6.2.1 Troubleshooting Problems with Alarm Display

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output				
	Alarm Code Output			Alarm Output	
	ALO1	ALO2	ALO3		
A.40 Main circuit voltage error detection.	OFF	OFF	ON	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON

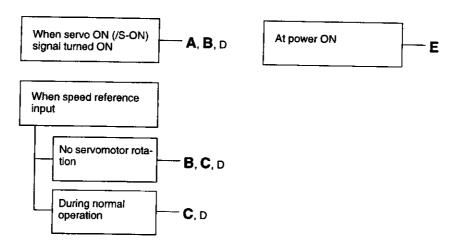


	Cause	Remedy
Α	The power supply voltage is not within the range of specifications.	Check power supply.
В	Load exceeds capacity of the regenerative unit.	Check specifications of load inertia and overhanging load.
C	Regenerative transistor is abnormal.	Replace SERVOPACK.
D	 Rectifying diode defective. Fuse blown. Inrush current-limited resistor disconnected. 	
Е	SERVOPACK defective.	1

Display and Outputs

Digital Operator	Alarm Output			
Display and	Alarm Code Output			Alarm Output
Alarm Name	ALO1	ALO2	ALO3	
A.51 Overspeed	ON	OFF	ON	OFF

OFF: Output transistor is OFF ON: Output transistor is ON

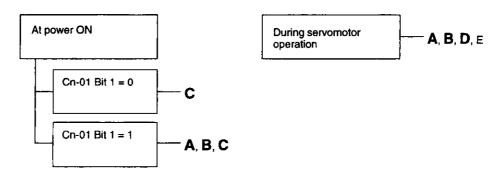

	Cause	Remedy
A	Servomotor wiring incorrect. Encoder wiring incorrect (disconnection, shortcircuit, power supply, etc.).	Check and correct wiring. (Check phase -A, -B, -C pulses correct at 2CN.)
В	Incremental encoder power not supplied from SERVOPACK.	Use the SERVOPACK power supply for the encoder.
С	Noise in encoder wiring.	Separate encoder wiring from main wiring circuits.
D	Incorrect parameter (number of encoder pulses) setting.	Set parameter Cn-11 to the correct number of pulses.
Е	Circuit board (1PWB) defective.	Replace SERVOPACK.

6.2.1 Troubleshooting Problems with Alarm Display

Display and Outputs

Digital Operator	Alarm Output				
Display and Alarm Name	Alarm Code Output			Alarm Output	
Alam Hame	ALO1	ALO2	ALO3	- January Catpan	
A.71 Overload (High load) A.72 Overload (Low load)	ON	ON	ON	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON

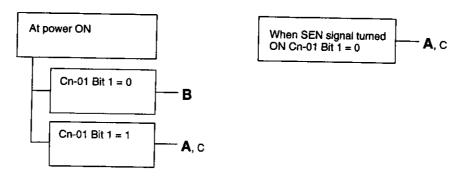


	Cause	Remedy
Α	Servomotor wiring incorrect or disconnected.	Check wiring and connectors at servomotor.
В	Encoder wiring incorrect or disconnected.	Check wiring and connectors at encoder.
С	Load greatly exceeds rated torque.	Reduce load torque and inertia. Otherwise, replace with larger capacity servomotor.
D	Incremental encoder power not supplied from SERVOPACK.	Use the SERVOPACK power supply for the encoder.
E	Circuit board (1PWB) defective.	Replace SERVOPACK.

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output				
	Alarm Code Output			Alarm Output	
	ALO1	ALO2	ALO3		
A.80 Absolute encoder error (only when absolute encoder is used)	OFF	OFF	OFF	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON

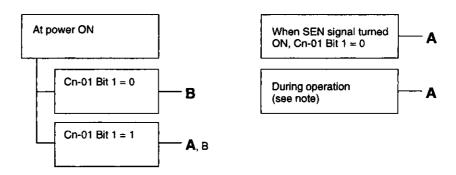

	Cause	Remedy
A	Incorrect absolute encoder wiring (PA, PB, RESET, SEN signal etc.).	Check and correct the absolute encoder wiring.
В	Absolute encoder malfunctioned.	• At Cn-01 Bit 1 = 0, turn SEN signal OFF then back ON.
		• At Cn-01 Bit 1 = 1, turn SERVOPACK power OFF then back ON.
С	Circuit board (1PWB) defective.	Replace SERVOPACK.
D	Error occurred in absolute encoder.	• At Cn-01 Bit 1 = 0, turn SEN signal OFF then back ON (if servomotor is running, first turn servo OFF).
- - - -	Another encoder alarm displayed when SEN signal or power supply turned back ON.	• At Cn-01 Bit 1 = 1, turn SERVOPACK power OFF then back ON.
E	SERVOPACK miscounted pulses (positional displacement) or malfunctioned due to noise.	Separate encoder wiring from main wiring circuits.
		• At Cn-01 Bit 1 = 0, turn SEN signal OFF then back ON (if servomotor is running, first turn servo OFF).
		• At Cn-01 Bit 1 = 1, turn SERVOPACK power OFF then back ON.

6.2.1 Troubleshooting Problems with Alarm Display

Display and Outputs

Digital Operator	Alarm Output				
Display and Alarm Name	Alarm Code Output			Alarm Output	
	ALO1	ALO2	ALO3		
A.81 Absolute encoder back-up error (only when 12 bit absolute encoder is used)	OFF	OFF	OFF	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON


	Cause	Remedy	
Α	The following power supplied to the absolute encoder all failed:	Follow absolute encoder set-up procedures	
	• +5 V supply		
	Battery (ER6V C3)		
	Internal capacitor		
В	Circuit board (1PWB) defective.	Replace SERVOPACK.	
C	Absolute encoder malfunctioned.	Replace servomotor.	

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output			
	Alarm Code Output			Alarm Output
	ALO1	ALO2	ALO3	
A.82 Absolute encoder sum-check error (only when 12 bit absolute encoder is used)	OFF	OFF	OFF	OFF

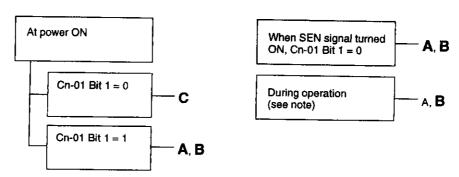
OFF: Output transistor is OFF ON: Output transistor is ON

Status When Alarm Occurred

	Cause	Remedy
A	Abnormality during absolute encoder memory check.	 Follow absolute encoder set-up procedures.
		 Replace servomotor if error occurs frequently.
В	Circuit board (1PWB) defective.	Replace SERVOPACK.

An absolute encoder error (A.80) is given initially if a sum-check error (A.82) is generated during operation. The sum-check error (A.82) occurs after turning the SEN signal (or SERVOPACK power supply) OFF and back ON.

However, the sum-check error (A.82) does occur during operation if the host controller is receiving the phase-S signal (serial data).


6.2.1 Troubleshooting Problems with Alarm Display

Display and Outputs

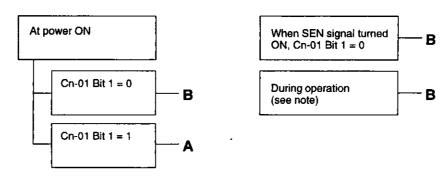
Digital Operator Display and Alarm Name	Alarm Output				
	Alarm Code Output			Alarm Output	
	ALO1	ALO2	ALO3		
A.83 Absolute encoder battery error	OFF	OFF	OFF	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON

Status When Alarm Occurred

	Cause	Remedy
Α	Battery not connected.Battery connection defective.	Check and correct battery connection.
В	Battery voltage below specified value. Specified value: 2.8 V.	Install new battery and turn SEN signal (or SERVOPACK) ON.
C	Circuit board (1PWB) defective.	Replace SERVOPACK.

No alarm occurs at the SERVOPACK when a battery error (A.83) is generated. The battery error (A.83) occurs the next time the SEN signal (or SERVOPACK) turns ON.


However, the battery error (A.83) can be read during operation if the host controller is receiving the phase-S signal (serial data).

Display and Outputs

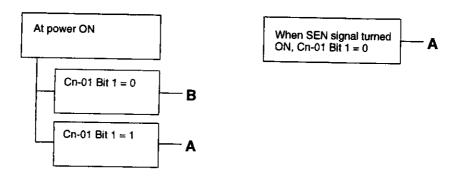
Digital Operator	Alarm Output				
Display and Alarm Name	Alarm Code Output			Alarm Output	
Alarm Name	ALO1	ALO2	ALO3		
A.84 Absolute encoder data error (only when absolute encoder is used)	OFF	OFF	OFF	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON

Status When Alarm Occurred

	Cause	Remedy
A	Absolute encoder malfunctioned.	• At Cn-01 Bit 1 = 0, turn SEN signal OFF then back ON.
		 At Cn-01 Bit 1 = 1, turn SERVOPACK power OFF then back ON.
		 Replace servomotor if error occurs frequently.
В	Circuit board (1PWB) defective.	Replace SERVOPACK.

No alarm occurs at the SERVOPACK when a data error (A.84) is generated. The data error (A.84) occurs the next time the SEN signal (or SERVOPACK) turns ON.


However, the data error (A.84) can be read during operation if the host controller is receiving the phase-S signal (serial data).

6.2.1 Troubleshooting Problems with Alarm Display

Display and Outputs

Digital Operator	Alarm Output				
Display and Alarm Name	Alarm Code Output			Alarm Output	
Additional Hame	ALO1	ALO2	ALO3		
A.85 Absolute encoder overspeed (only when absolute encoder is used)	OFF	OFF	OFF	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON

	Cause	Remedy
A	Absolute encoder turned ON at a speed exceeding 400 r/min.	Turn ON encoder power supply (or SEN signal or SERVOPACK power supply) at a speed not exceeding 400 r/min.
В	Circuit board (1PWB) defective.	Replace SERVOPACK.

6

Display and Outputs

Digital Operator Display and Alarm Name		Alarm Output				
	Alarm Code Output			Alarm Output		
	ALO1	ALO2	ALO3			
A.A1 Heat sink overheated	ON	ON	ON	OFF		

OFF: Output transistor is OFF ON: Output transistor is ON

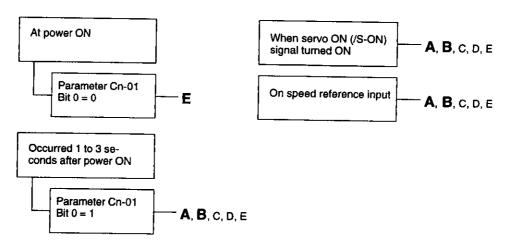
Status When Alarm Occurred

-	Cause	Remedy
A	The ambient temperature of the SERVOPACK exceeds 55°C.	Alter conditions so that the ambient temperature goes below 55°C.
В	The air flow around the heat sink is bad.	Follow installing method and provide sufficient surrounding space as specified.
C	Fan stopped.	Replace SERVOPACK.
D	SERVOPACK is running under overload.	Reduce load.
Е	SERVOPACK defective.	Replace SERVOPACK.

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output				
	Alarm Code Output			Alarm Output	
	ALO1	ALO2	ALO3		
A.b1 Reference input read error	OFF	OFF	OFF	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON

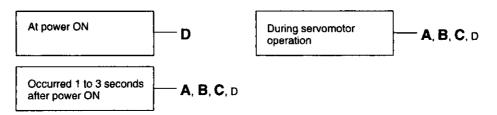

	Cause	Remedy
A	Part malfunctioned in reference read-in unit (A/D converter, etc.).	Reset alarm and restart operation.
В	Part defective in reference read-in unit (A/D converter, etc.).	Replace SERVOPACK.
С	Circuit board (1PWB) defective.	Replace SERVOPACK.

6.2.1 Troubleshooting Problems with Alarm Display

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output			
	Alarm Code Output			Alarm Output
	ALO1	ALO2	ALO3	
A.C1 Servo overrun	ON	OFF	ON	OFF

OFF: Output transistor is OFF ON: Output transistor is ON

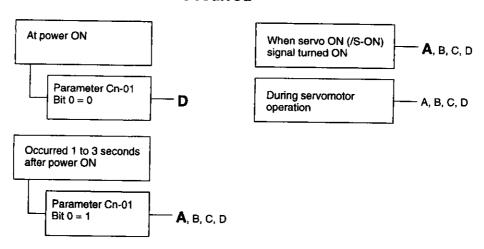

	Cause	Remedy
A	Servomotor wiring incorrect or disconnected.	Check wiring and connectors at servomotor.
В	Encoder wiring incorrect or disconnected.	Check wiring and connectors at encoder.
С	Incremental encoder power not supplied from SERVOPACK.	Use the SERVOPACK power supply for the encoder.
D	Encoder defective.	Replace servomotor.
E	Circuit board (1PWB) defective.	Replace SERVOPACK.

6

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output				
	Alarm Code Output			Alarm Output	
	ALO1	ALO2	ALO3		
A.C2	ON	OFF	ON	OFF	
Encoder phase					
detection error			+		

OFF: Output transistor is OFF ON: Output transistor is ON

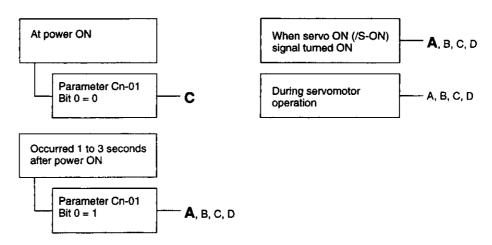

	Cause	Remedy
Α	Noise in encoder wiring.	Separate encoder wiring from main wiring circuits.
В	Encoder wiring incorrect or poor connection.	Check wiring and connectors at encoder.
С	Encoder defective.	Replace servomotor.
D	Circuit board (1PWB) defective.	Replace SERVOPACK.

6.2.1 Troubleshooting Problems with Alarm Display

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output				
		Alarm Code Output			
	ALO1	ALO2	ALO3	Alarm Output	
A.C3 Encoder phase-A, -B disconnection	ON	OFF	ON	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON



	Cause	Remedy
A	Encoder wiring incorrect or poor connection.	Check wiring and connectors at encoder.
В	Noise in encoder wiring.	Separate encoder wiring from main wiring circuits.
C	Encoder defective.	Replace servomotor.
D	Circuit board (1PWB) defective.	Replace SERVOPACK.

Display and Outputs

Digital Operator	Alarm Output				
Display and Alarm Name	Alarm Code Output			Alarm Output	
Alarm Name	ALO1	ALO2	ALO3		
A.C4 Encoder phase-C disconnection	ON	OFF	ON	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON

	Cause	Remedy
Α	Encoder wiring incorrect or poor connection.	Check wiring and connectors at encoder.
В	Noise in encoder wiring.	Separate encoder wiring from main wiring circuits.
С	Encoder defective.	Replace servomotor.
D	Circuit board (1PWB) defective.	Replace SERVOPACK.

6.2.1 Troubleshooting Problems with Alarm Display

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output				
	Alarm Code Output			Alarm Output	
	ALO1	ALO2	ALO3		
A.F1 Power line open phase	OFF	ON	OFF	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON

	Cause	Remedy	
Α	One phase (R,S,T) of the main circuit power	Check power supply.	
	supply is disconnected.	Check wiring of the main circuit power supply.	
		Check MCCB, noise filter, magnetic contactor.	
В	There is one phase where the line voltage is low.	Check power supply.	
С	SERVOPACK defective.	Replace SERVOPACK.	

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output			
	Alarm Code Output			Alarm Output
	ALO1	ALO2	ALO3	
A.F3 Power loss error	OFF	ON	OFF	OFF

OFF: Output transistor is OFF ON: Output transistor is ON

	Cause	Remedy
A	Although power loss alarm is not necessary, its parameter is set valid.	Set the parameter Cn-01 bit 5 to 0.
В	Time between turning power OFF and back ON was shorter than 0.5 second.	After turning power OFF, wait for at least 0.5 second, before turning the power back ON.
С	If any of the following power supply conditions are met during motor operation: Complete power failure: half cycle of supply frequency Voltage drop: full cycle of supply frequency Note: Because of detector lag or detector margin, there may be no alarm even if the above values are exceeded.	Check the power supply. Terms Complete power failure=Power failure where voltage drops to zero. Voltage drop=Power failure where voltage drops, but not to zero.

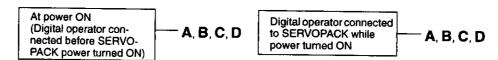
6.2.1 Troubleshooting Problems with Alarm Display

Display and Outputs

Digital Operator Display and Alarm Name	Alarm Output				
	Alarm Code Output			Alarm Output	
	ALO1	ALO2	ALO3		
A.F4 Main circuit contactor error	OFF	ON	OFF	OFF	

OFF: Output transistor is OFF ON: Output transistor is ON

Status When Alarm Occurred


Cause		Remedy
A	Controller defective.	Replace SERVOPACK.
В	Main circuit MC defective.	Replace SERVOPACK.

Display and Outputs

Digital Operator Display and Alarm Name		Alarm	Output	· · · · · · · · · · · · · · · · · · ·
	Alarm Code Output			Alarm Output
	ALO1	ALO2	ALO3	7
CPF00 Digital operator transmission error 1	Not specified			

This alarm is not stored in alarm trace-back function memory.

	Cause	Remedy
Α	Cable defective or poor contact between	Check connector connections.
	digital operator and SERVOPACK.	Replace cable.
В	Malfunction due to external noise.	Separate digital operator and cable from noise source.
C	Digital operator defective.	Replace digital operator.
D	SERVOPACK defective.	Replace SERVOPACK.

6

Display and Outputs

Digital Operator Display and Alarm Name		Alarm	Output	
	Alarm Code Output			Alarm Output
	ALO1	ALO2	ALO3	
CPF01 Digital operator transmission error 2	Not specified			

This alarm is not stored in alarm trace-back function memory.

Status When Alarm Occurred

	Cause	Remedy
Α	Cable defective or poor contact between	Check connector connections.
	digital operator and SERVOPACK.	Replace cable.
В	Malfunction due to external noise.	Separate digital operator and cable from noise source.
C	Digital operator defective.	Replace digital operator.
D	SERVOPACK defective.	Replace SERVOPACK.

Display and Outputs

Digital Operator	·	Alarm	Output	
Display and Alarm Name	Alarm Code Output Alarm Out			Alarm Output
Alarm Name	ALO1	ALO2	ALO3	
A.99	OFF	OFF	OFF	ON

OFF: Output transistor is OFF ON: Output transistor is ON

Status When Alarm Occurred

Indicates normal operation. Not an alarm.

6.2.2 Troubleshooting Problems With No Alarm Display

6.2.2 Troubleshooting Problems With No Alarm Display

Refer to the tables below to identify the cause of a problem which causes no alarm display and take the remedy described.

Turn OFF the servo system power supply before commencing the shaded procedures.

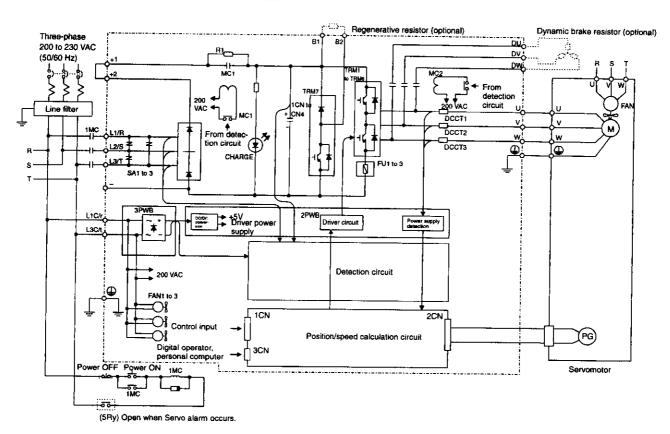
Contact your Yaskawa representative if the problem cannot be solved by the described procedures.

Troubleshooting Table No Alarm Display

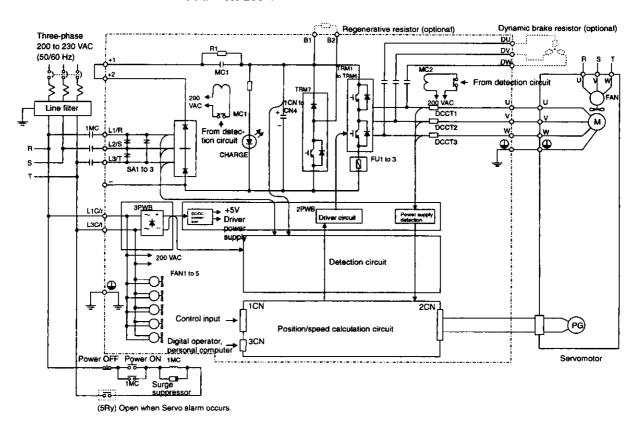
Symptom	Cause	Inspection	Remedy
Servomotor does not start	Power not connected	Check voltage between power supply terminals.	Correct the power circuit.
	Loose connection	Check terminals of connectors (1CN, 2CN).	Tighten any loose parts.
	Connector (1CN) external wiring incorrect	Check connector (1CN) external wiring.	Refer to connection diagram and correct wiring.
	Servomotor or encoder wiring disconnected		Reconnect wiring.
	Overloaded	Run under no load.	Reduce load or replace with larger capacity servomotor.
	Speed/position references not input	Check reference input pins.	Correctly input speed/position references.
	/S-ON is turned OFF	Cn-01 Bit 0 is 0.	Turn /S-ON input ON.
	/P-CON input function setting incorrect	Check parameter Cn-2B.	Refer to Section 3.2.1 and set parameters to match application
	Reference pulse mode selection incorrect	Refer to Section 3.2.2.	Select correct parameters Cn-02 Bits 3, 4, and 5.
	Encoder type differs from parameter setting.	Incremental or absolute encoder?	Set parameters Cn-01 Bit E to the encoder type used.
	P-OT and N-OT inputs are turned OFF.	(If Cn-01 Bits 2, 3 are 0)	Turn P-OT and N-OT input signals ON.
	CLR input is turned ON	Check status of error counter clear input.	Turn CLR input OFF.
	SEN input is turned OFF.	Absolute encoder used with Cn-01 Bit 1 set to 0.	Turn SEN input ON.
Servomotor moves nstantaneously, then stops	Number of encoder pulses differs from parameter setting.		Set the parameter (Cn-11) to match the number of encoder pulses.
	Servomotor or encoder wiring incorrect		Refer to Section 3.8.6 and correct wiring.
uddenly stops during operation nd will not restart	Alarm reset signal (/ALM-RST) is turned ON because an alarm occurred.		Remove cause of alarm. Turn alarm reset signal (ALM-RST) from ON to OFF.
ervomotor speed unstable	Wiring connection to motor defective	Check connection of power lead (phase U, V, and W) and encoder connectors.	Tighten any loose terminals or connectors.

Symptom	Cause	Inspection	Remedy
Servomotor vibrates at approximately 200 to 400 Hz.	Speed loop gain value too high		Reduce speed loop gain (Cn-04) preset value.
	Speed/position reference input lead too long		Minimize length of speed/position reference input lead, with impedance not exceeding several hundred Ω
	Speed/position reference input lead is bundled with power cables.		Separate reference input lead at least 30 cm from power cables.
High rotation speed overshoot on starting and stopping	Speed loop gain value too high		Reduce speed loop gain (Cn-04) preset value.
Servomotor overheated	Ambient temperature too high	Measure servomotor ambient temperature.	Reduce ambient temperature to 40°C max.
	Servomotor surface dirty	Visual check	Clean dust and oil from motor surface.
	Overloaded	Run under no load.	Reduce load or replace with larger capacity servomotor.
Abnormal noise	Mechanical mounting incorrect	Servomotor mounting screws loose?	Tighten mounting screws.
		Coupling not centered?	Center coupling.
		Coupling unbalanced?	Balance coupling.
	Bearing defective	Check noise and vibration near bearing.	Consult your Yaskawa representative if defective.
	Machine causing vibrations	Foreign object intrusion, damage or deformation of sliding parts of machine.	Consult with machine manufacturer.
Speed reference 0 V but servomotor rotates	Speed reference voltage offset applied		Refer to Sections 4.2.4 and 4.2.5 and adjust reference offset.

6.2.3 Internal Connection Diagram and Instrument Connection Examples

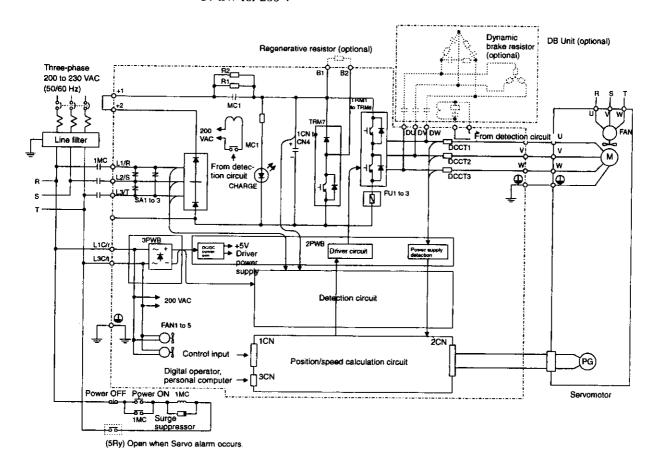

6.2.3 Internal Connection Diagram and Instrument Connection Examples

The SGDB SERVOPACK internal connection diagram and instrument connection examples are given below.

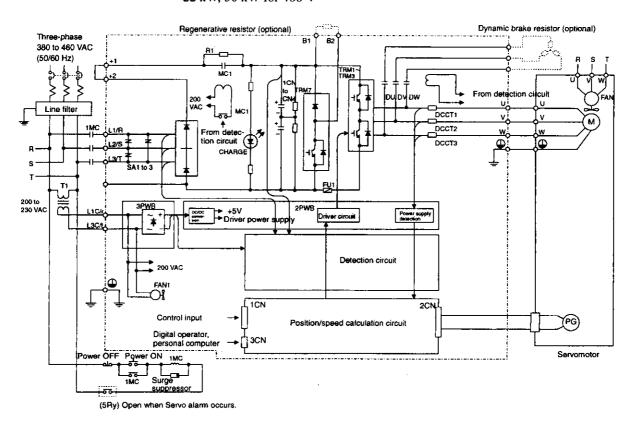

Refer to these diagrams during inspection and maintenance.

Internal Connection Diagram

22 kW for 200 V

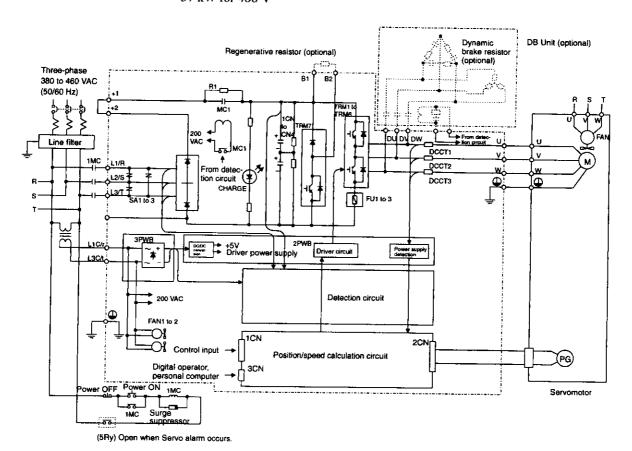


• 30 kW for 200 V

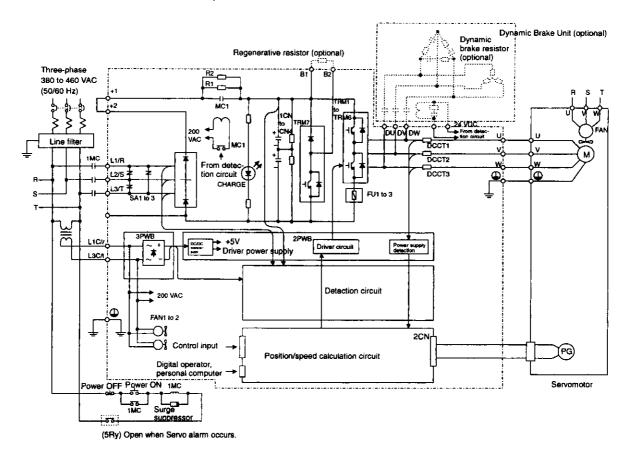


6.2.3 Internal Connection Diagram and Instrument Connection Examples

• 37 kW for 200 V

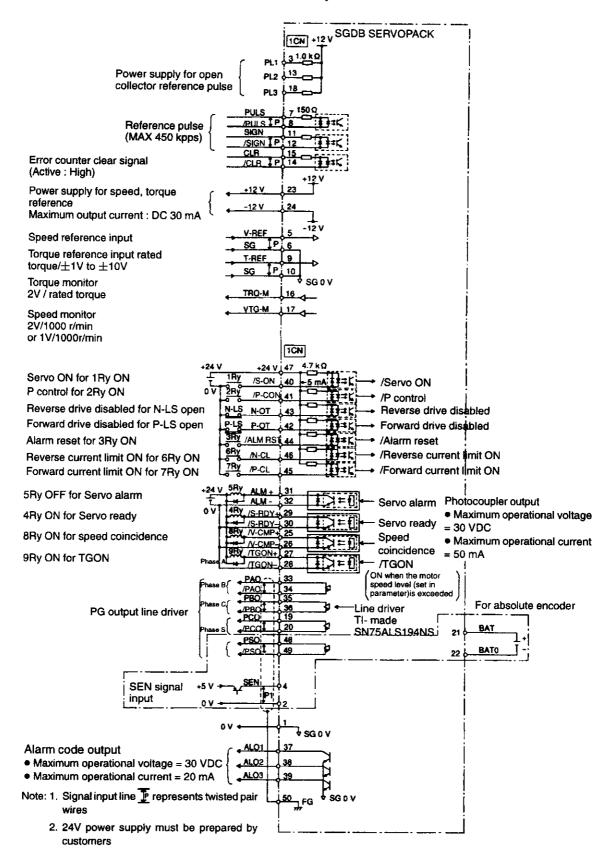


• 22 kW, 30 kW for 400 V

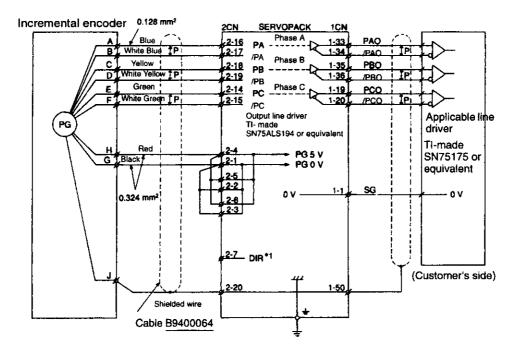


6.2.3 Internal Connection Diagram and Instrument Connection Examples

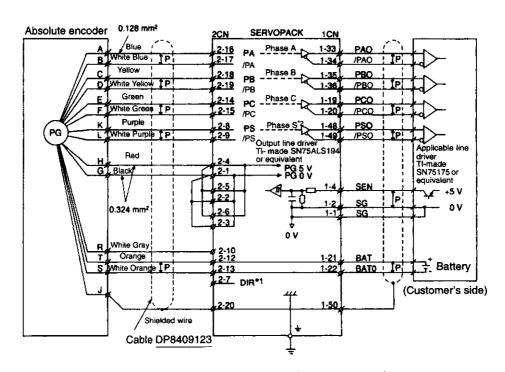
• 37 kW for 400 V



• 45 kW, 55 kW for 400 V


6.2.3 Internal Connection Diagram and Instrument Connection Examples

Instrument Connection Examples



Connection Method Between SERVOPACK and Encoder

In case of incremental encoder

In case of absolute encoder

- * 1. By connecting DIR (2CN-7) to PG0V, the motor will be in reverse connection (motor reversed by forward reference).
- * 2. Phase-S signal is valid only when 12 bit absolute encoder is used.

Note: P represents twisted pair wires.

Servo Adjustment

This appendix presents the basic rules for Σ -Series AC SERVOPACK gain adjustment, describes various adjustment techniques, and gives some preset values as guidelines.

A.1	Σ-Series AC SERVOPACK Gain Adjustment A.1.1 Σ-Series AC SERVOPACKs and Gain Adjustment	A - 2
	Methods	A - 2
	A.1.2 Basic Rules for Gain Adjustment	A - 3
A.2	Adjusting a Speed-control SERVOPACK .	A - 4
	A.2.1 Adjusting Using Auto-tuning	A - 4
	A.2.2 Manual Adjustment	A - 5
A.3	Adjusting a Position-control SERVOPACK	A - 8
	A.3.1 Adjusting Using Auto-tuning	A - 8
	A.3.2 Manual Adjustment	A - 9
A.4	Guidelines for Gain Settings According to	
	Load Inertia Ratio	A - 12

A.1 Σ-Series AC SERVOPACK Gain Adjustment

This section gives some basic information required to adjust the servo system.

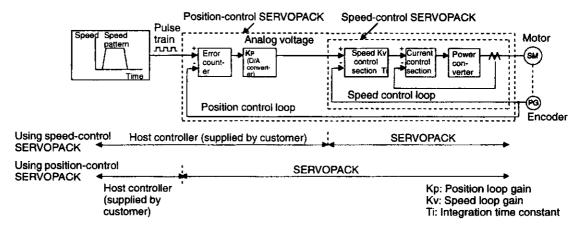
A.1.1 Σ-Series AC SERVOPACKs and Gain Adjustment Methods

Five types of Σ-Series AC SERVOPACK are available: SGD, SGDA, DR1, DR2, and the current SGDB.

The adjustment method is basically identical for each SERVOPACK type, except that autotuning is not available for some types.

The SGDB, SGDA, SGD, and DR2 SERVOPACKs allow both manual adjustment by the conventional method of observing the machine response and automatic adjustment using the internal auto-tuning function. The DR1 SERVOPACK does not offer auto-tuning.

The main parameters changed by the customer to adjust the servo system include the following:


- Cn-04 (Speed Loop Gain)
- Cn-05 (Speed Loop Integration Time Constant)
- Cn-17 (Torque Reference Filter Time Constant)
- Cn-1A (Position Loop Gain)

In a speed-control SERVOPACK (where speed references are applied as analog voltages), the position loop is controlled by the host controller, so the position loop gain is normally adjusted at the host controller.

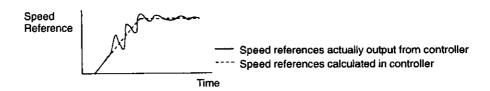
If adjustment is not possible at the host controller, the same adjustment can be achieved using Cn-03 (Speed Reference Gain), but the servomotor may not reach maximum speed for some preset values of this parameter.

A simple block diagram of the servo system is shown below.

Servo System Block Diagram

Note: A position-control SERVOPACK has no D/A converter for speed reference output. This conversion is handled by internal calculations.

А


A.1.2 Basic Rules for Gain Adjustment

• The servo system comprises three feedback systems: position loop, speed loop, and current loop. The response must increase from outer loop to inner loop (see Servo System Block Diagram, above). The response deteriorates and oscillates if this principle is not obeyed. The customer cannot adjust the current loop. Sufficient response is assured for the current loop.

The customer can adjust the position loop gain and speed loop gain, as well as the speed loop integration time constant and torque reference filter.

- The position loop and speed loop must be adjusted to provide a balanced response. In particular, if the position loop gain only is increased (adjustment with Cn-03 at the SER-VOPACK if position loop gain adjustment is not possible at the host controller), the speed references oscillate and the result is increased, oscillating position control times.
 - If the position loop gain (or Cn-03) is increased, the speed loop gain (Cn-04) must be similarly increased.
 - If the mechanical system starts to oscillate after the position loop gain and speed loop gain are increased, do not increase the gains further.
- The position loop gain should not normally be increased above the characteristic frequency of the mechanical system.
 - For example, the harmonic gears used in an articulated robot form a structure with extremely poor rigidity and a characteristic frequency of approximately 10 to 20 Hz. This type of machine allows a position loop gain of only 10 to 20 (1/sec).
 - Conversely, the characteristic frequency of a precision machine tool such as a chip mounter or IC bonder exceeds 70 Hz, allowing a position loop gain exceeding 70 (1/sec) for some machines.
 - Therefore, although the response of the servo system (controller, servo driver, motor, detectors, etc.) is an important factor where good response is required, it is also important to improve the rigidity of the mechanical system.
- In cases where the position loop response is greater than or equal to the speed loop response
 and linear acceleration or deceleration is attempted, the poor speed loop response and follow-up cause an accumulation of position loop errors and result in increased output of speed
 references from the position loop.
 - The motor moves faster and overshoots as a result of increased speed references, and the position loop tends to decrease the speed references. However, the poor motor follow-up due to the poor speed loop response results in oscillating speed references, as shown in the diagram below.
 - If this problem occurs, reduce the position loop gain or increase the speed loop gain to eliminate the speed reference oscillations.

Speed Reference Output with Unbalanced Position Loop Gain and Speed Loop Gain

A.2 Adjusting a Speed-control SERVOPACK

This section gives examples of adjusting the gains of a speed-control SERVOPACK manually and using auto-tuning.

A.2.1 Adjusting Using Auto-tuning

The DR1 SERVOPACK does not offer auto-tuning.

■ Important Points About Auto-tuning

Speed During Auto-tuning

Auto-tuning may not function correctly if the speed is too low. Set the speed to approximately 500 r/min.

Set the speed with the parameter Cn-10 (Jog speed).

Selecting Machine Rigidity

If the machine rigidity is unknown, select the rigidity according to the following standards.

Drive Method	Machine Rigidity		
	SGDB, SGDA, DR2	SGD	
Ball screw, direct	3 (C-003) to 7 (C-007)	High/medium response	
Ball screw, with reduction gears	2 (C-002) to 3 (C-003)	Medium response	
Timing belt	1 (C-001) to 3 (C-003)	Low/medium response	
Chain	1 (C-001) to 2 (C-002)	Low response	
Wave reduction gears*	1 (C-001) to 2 (C-002)	Low response	

^{*} Product name: Harmonic Drive

Select the machine rigidity level for SGDB, SGDA and DR2 according to the table.

Level	Rigidity
7 (C-007)	High
6 (C-006)	
5 (C-005)	ŀ
4 (C-004)	1:
3 (C-003)	Medium
2 (C-002)	
1 (C-001)	Low

Auto-tuning may not end if high response is selected for a low-rigidity machine or low response is selected for a high-rigidity machine.

If this occurs, halt the auto-tuning and change the machine rigidity selection.

Α

If Auto-tuning is Unsuccessful

Auto-tuning may be unsuccessful (the end of auto-tuning not displayed) for machines with large play or extremely low rigidity.

Similarly, auto-tuning may be unsuccessful for a machine with high load inertia (exceeding 15 to 30 times the motor moment of inertia).

In these cases, use conventional manual adjustment.

Even if auto-tuning is successful for a machine with large fluctuations in load inertia or load torque, vibrations or noise may still occur in some positions.

■ Response During Operation is Unsatisfactory after Auto-tuning

Auto-tuning sets the gain and integration time constant with some safety margin (to avoid oscillations). This can result in long positioning times.

In particular, the target position may not be reached if low response is selected, because the machine does not move in response to the final minute references. An excessively high setting of the integration time constant (Cn-05) during auto-tuning is one cause of this problem.

If response is slow after auto-tuning, the speed loop gain cannot be manually increased very much before oscillation starts.

In this case, manually reduce the integration time constant while observing the machine behavior to ensure oscillation does not occur.

Auto-tuning does not set the torque reference filter (Cn-17) or speed reference gain (Cn-03).

A.2.2 Manual Adjustment

Parameters

The role of each parameter is briefly described below.

• Speed Loop Gain (Cn-04)

This parameter sets the speed loop response.

The response is improved by setting this parameter to the maximum value in the range which does not cause vibrations in the mechanical system.

The following formula relates the speed loop gain to the load inertia.

Speed Loop Gain Kv [Hz] =
$$\frac{2}{\frac{J_L}{J_M} + 1} \times \text{(Cn-04 Preset value)}$$

JL Motor Axis Converted Load Inertia

J_M: Motor Moment of Inertia

• Speed Loop Integration Time Constant (Cn-05)

The speed loop has an integration element to allow response to micro-inputs.

This integration element can produce a delay in the servo system, and the positioning setting time increases and response becomes slower as the time constant increases.

However, the integration time constant must be increased to prevent machine vibration if the load inertia is large or the mechanical system includes a element that is prone to vibra-

A.2.2 Manual Adjustment

tion.

The following formula calculates a guideline value.

$$Ti \ge 2.3 \times \frac{1}{2\pi \times Kv}$$

Ti: Integration Time Constant (sec)

Kv: Speed Loop Gain (Hz) (calculated above)

Torque Reference Filter Time Constant (Cn-17)

When a ball screw is used, torsional resonance may occur which increases the pitch of the vibration noise.

This vibration can sometimes be overcome by increasing the torque reference filter time constant.

However, this filter will produce a delay in the servo system, just like the integration time constant, and its value should not be increased more than necessary.

Speed Reference Gain (Cn-03)

Changing the speed reference gain (Cn-03) changes the position loop gain an equivalent amount. That is, reducing the speed reference gain is equivalent to reducing the position loop gain and increasing it is equivalent to increasing the position loop gain.

Use this parameter (Cn-03) in the following circumstances:

- No position loop gain adjustment at host controller (including cases where fine adjustment not possible by changing number of D/A converter bits)
- Clamping the speed reference output range to specific speeds

Normally leave at the factory setting.

IMPORTANT

For a speed-control SGD or SGDA SERVOPACK, or SGDB or DR2 SERVOPACK used for speed control, the position loop gain (Cn-1A) is valid in zero-clamp mode only.

The position loop gain (Cn-1A) parameter is always invalid for a DR1 SERVOPACK.

For normal control, change the position loop gain at the host controller or adjust the speed reference gain (Cn-03) in the SERVOPACK.

Changing Cn-1A does not change the position loop gain.

Adjustment Procedure

- Set the position loop gain at the host controller to a low value and increase the speed loop gain (Cn-04) within the range that no abnormal noise or vibration occurs.
 If adjustment of the position loop gain is not possible at the host controller, reduce the speed reference gain (Cn-03).
- Slightly reduce the speed loop gain from the value at step 1, and increase the position loop gain at the host controller in the range that no overshooting or vibration occurs.
 If adjustment of the position loop gain is not possible at the host controller, increase the speed reference gain (Cn-03).
- 3. Determine the speed loop integration time constant (Cn-05), by observing the positioning setting time and vibrations in the mechanical system.
 The positioning setting time may become excessive if the speed loop integration time constant (Cn-05) is too large.

- 4. It is not necessary to change the torque reference filter time constant (Cn-17) unless torsional resonance occurs in the machine shafts.
 Torsional resonance may be indicated by a high vibration noise. Adjust the torque reference filter time constant (Cn-17) to reduce the vibration noise.
- 5. Finally, fine adjustment of the position gain, speed gain, and integration time constant is required to determine the optimum point for step response.

A.3.1 Adjusting Using Auto-tuning

A.3 Adjusting a Position-control SERVOPACK

This section gives examples of adjusting the gains of a position-control SERVOPACK manually and using auto-tuning.

A.3.1 Adjusting Using Auto-tuning

The DR1 SERVOPACK does not offer auto-tuning.

Important Points About Auto-tuning

Speed During Auto-tuning

Auto-tuning may not function correctly if the speed is too low. Set the speed to approximately 500 r/min.

Set the speed with the parameter Cn-10 (Jog speed).

Selecting Machine Rigidity

If the machine rigidity is unknown, select the rigidity according to the following standards.

Drive Method	Machine Rigidity		
	SGDB, SGDA, DR2	SGD	
Ball screw, direct	3 (C-003) to 7 (C-007)	High/medium response	
Ball screw, with reduction gears	2 (C-002) to 3 (C-003)	Medium response	
Timing belt	1 (C-001) to 3 (C-003)	Low/medium response	
Chain	1 (C-001) to 2 (C-002)	Low response	
Wave reduction gears*	1 (C-001) to 2 (C-002)	Low response	

^{*} Product name: Harmonic Drive

Select the machine rigidity level for SGDB, SGDA and DR2 according to the table.

Level	Rigidity
7 (C-007)	High
6 (C-006)	
5 (C-005)	
4 (C-004)	:
3 (C-003)	Medium
2 (C-002)	:
I (C-001)	Low

Auto-tuning may not end if high response is selected for a low-rigidity machine or low response is selected for a high-rigidity machine.

If this occurs, halt the auto-tuning and change the machine rigidity selection.

Α

If Auto-tuning is Unsuccessful

Auto-tuning may be unsuccessful (the end of auto-tuning not displayed) for machines with large play or extremely low rigidity.

Similarly, auto-tuning may be unsuccessful for a machine with high load inertia (exceeding 15 to 30 times the motor moment of inertia).

In these cases, use conventional manual adjustment.

Even if auto-tuning is successful for a machine with large fluctuations in load inertia or load torque, vibrations or noise may still occur in some positions.

■ Response During Operation is Unsatisfactory after Auto-tuning

Auto-tuning sets the gain and integration time constant with some safety margin (to avoid oscillations). This can result in long positioning times.

In particular, the target position may not be reached if low response is selected, because the machine does not move in response to the final minute references. An excessively high setting of the integration time constant (Cn-05) during auto-tuning is one cause of this problem.

If response is slow after auto-tuning, the speed loop gain cannot be manually increased very much before vibration starts.

In this case, manually reduce the integration time constant while observing the machine behavior to ensure oscillation does not occur.

Auto-tuning does not set the torque reference filter (Cn-17).

A.3.2 Manual Adjustment

Parameters

The role of each parameter is briefly described below.

• Speed Loop Gain (Cn-04)

This parameter sets the speed loop response.

The response is improved by setting this parameter to the maximum value in the range which does not cause vibrations in the mechanical system.

The following formula relates the speed loop gain to the load inertia.

Speed Loop Gain Kv [Hz] =
$$\frac{2}{J_L} \times (Cn - 0.04 \ Preset \ value)$$

JL: Motor Axis Converted Load Inertia

J_M: Motor Moment of Inertia

Speed Loop Integration Time Constant (Cn-05)

The speed loop has an integration element to allow response to micro-inputs.

This integration element can produce a delay in the servo system, and the positioning setting time increases and response becomes slower as the time constant increases.

However, the integration time constant must be increased to prevent machine vibration if

A.3.2 Manual Adjustment

the load inertia is large or the mechanical system includes a vibration elements. The following formula calculates a guideline value.

$$T_i \ge 2.3 \times \frac{1}{2\pi \times K_V}$$

Ti: Integration Time Constant (sec)

Kv: Speed Loop Gain (Hz) (calculated above)

Torque Reference Filter Time Constant (Cn-17)

When a ball screw is used, torsional resonance may occur which increases the pitch of the vibration noise.

These vibrations can sometimes be overcome by increasing the torque reference filter time constant.

However, this filter can produce a delay in the servo system, as is the integration time constant, and its value should not be increased more than necessary.

Position Loop Gain

The position loop gain parameter sets the servo system response.

The higher the position loop gain is set, the better the response and shorter the positioning times.

To enable a high setting of the position loop gain, increase the machine rigidity and raise the machine characteristic frequency.

Increasing the position loop gain only to improve the response can result in oscillating response of the overall servo system, that is, the speed references output from the position loop oscillate. Therefore, also increase the speed loop gain while observing the response.

Adjustment Procedure

- 1. Set the position loop gain to a low value and increase the speed loop gain (Cn-04) within the range that no abnormal noise or oscillation occurs.
- 2. Slightly reduce the speed loop gain from the value at step 1, and increase the position loop gain in the range that no overshooting or vibration occurs.
- 3. Determine the speed loop integration time constant (Cn-05), by observing the positioning set time and vibrations in the mechanical system.
 - The positioning set time may become excessive if the speed loop integration time constant (Cn-05) is too large.
- 4. It is not necessary to change the torque reference time constant (Cn-17) unless torsional resonance occurs in the machine shafts.
 - Torsional resonance may be indicated by a high vibration noise. Adjust the torque reference filter time constant to reduce the vibration noise.
- 5. Finally, fine adjustment of the position gain, speed gain, and integration time constant is required to determine the optimum point for step response, etc.

Functions to improve Response

The mode switch, feed-forward, and bias functions improve response.

However, they are not certain to improve response and may even worsen it in some cases. Follow the points outlined below and observe the actual response while making adjustments.

Mode Switch

The mode switch improves the transition characteristics when the torque references become saturated during acceleration or deceleration.

Above the set level, the speed loop control switches from PI (proportional/integral) control to P (proportional) control.

Feed-forward Function

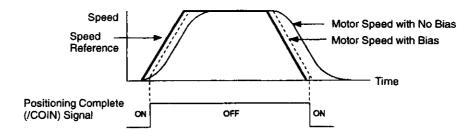
Use feed-forward to improve the response speed. However, feed-forward may be ineffective in systems where a sufficiently high value of position loop gain is not possible. Follow the procedure below to adjust the feed-forward amount (Cn-1D).

- 1. Adjust the speed loop and position loop, as described above.
- 2. Gradually increase the feed-forward amount (Cn-1D), such that the positioning complete (/COIN) signal is output early.

At this point, ensure that the positioning complete (/COIN) signal breaks up (alternately turns ON/OFF) and that the speed does not overshoot. These problems can arise if the feedforward is set too high.

For all types of SERVOPACK except DR1, a primary delay filter can be applied to feed-forward. This filter can be used to correct breakup (alternately turning ON/OFF) of the positioning complete (/COIN) signal or speed overshoot arising when feed-forward is activated.

• Bias Function


When the lag pulses in the error counter exceeds the positioning complete width (Cn-1B), the bias amount (Cn-1C) is added to the error counter output (speed reference). If the lag pulses in the error counter lies within the positioning complete width (Cn-1B), the bias amount (Cn-1C) is no longer added.

This reduces the number of pulses in the error counter and shortens the positioning time.

The motor speed becomes unstable if the bias amount is too large.

Observe the response during adjustment as the optimum value depends on the load, gain, and positioning complete width.

Set Cn-0C to zero (0) when the bias is not used.

The adjustment procedures described above are common for all Yaskawa digital AC SERVO-PACKs. However, not all functions are available on each SERVOPACK. Consult the technical specifications of your SERVOPACK for details.

The adjustment procedures are also identical for conventional analog servos. However, in this case, the adjustments are made using potentiometers instead of the parameters.

A.4 Guidelines for Gain Settings According to Load Inertia Ratio

This section presents tables of load inertia values for reference when adjusting the gain.

Adjustment guidelines are given below according to the rigidity of the mechanical system and load inertia. Use these values as guidelines when adjusting according to the procedures described above. These values are given as guidelines only. Oscillations and poor response may occur inside the specified value ranges. Observe the response (waveform) when optimizing the adjustment. Higher gains are possible for machines with high rigidity.

Machines with High Rigidity

Ball Screw, Direct Drive Machines

Example: Chip mounter, IC bonder, precision machine tools

Load/Inertia Ratio (J _L /J _M)	Position Loop Gain (Cn-1A) [1/s]	Speed Loop Gain (Cn-04)	Speed Loop Integration Time Constant (Cn-05) [ms]
1 x	50 to 70	50 to 70	5 to 20 Slightly increase for inertia ratio of 20 x, or greater.
3 x		100 to 140	
5 x		150 to 200	
10 x		270 to 380	
15 x		400 to 560	
20 x		500 to 730	
30 x		700 to 1100	1

For an inertia ratio of 10 x, or greater, slightly reduce the position loop gain and speed loop gain below the values shown and set the integration time constant to a higher value before starting the adjustment.

As the inertia ratio increases, set the position loop gain and speed loop gain to the lower limit of the range of values specified. Conversely, increase the speed loop integration time constant.

Machines with Medium Rigidity

Machines driven by ball screw through reduction gears, or machines directly driven by long ball screws.

Example: General machine tools, orthogonal robots, conveyors

Load/Inertia Ratio (J _L /J _M)	Position Loop Gain (Cn-1A) [1/s]	Speed Loop Gain (Cn-04)	Speed Loop Integration Time Constant (Cn-05) [ms]
1 x	30 to 50	30 to 50	10 to 40 Slightly increase for inertia ratio of 20 x, or greater.
3 x		60 to 100	
5 x		90 to 150	
10 x		160 to 270	
15 x		240 to 400	
20 x		310 to 520	
30 x		450 to 770	

For an inertia ratio of 10 x, or greater, slightly reduce the position loop gain and speed loop gain below the values shown and set the integration time constant to a higher value before starting the adjustment.

As the inertia ratio increases, set the position loop gain and speed loop gain to the lower limit of the range of values specified. Conversely, increase the speed loop integration time constant.

Machines with Low Rigidity

Machines driven by timing belts, chains or wave reduction gears (product name: Harmonic Drive).

Example: Conveyors, articulated robots

Load/Inertia Ratio (J _L /J _M)	Position Loop Gain (Cn-1A) [1/s]	Speed Loop Gain (Cn-04)	Speed Loop Integration Time Constant (Cn-05) [ms]
1 x	10 to 20	10 to 20	50 to 120
3 x		20 to 40	Slightly increase for inertia ratio of 20 x, or greater.
5 x		30 to 60	
10 x		50 to 110	
15 x		80 to 160	
20 x		100 to 210	
30 x		150 to 310	

For an inertia ratio of 10 x, or greater, slightly reduce the position loop gain and speed loop gain below the values shown and set the integration time constant to a higher value before starting the adjustment.

As the inertia ratio increases, set the position loop gain and speed loop gain to the lower limit of the range of values specified. Conversely, increase the speed loop integration time constant.

When a speed-control SERVOPACK is used, set the position loop gain at the host controller. If the position loop gain cannot be set at the host controller, adjust the SERVOPACK speed reference gain (Cn-03).

The position loop gain (Cn-1A) of a speed-control SERVOPACK is valid in zero-clamp mode only.

The position loop gain is determined from the following relationship.

$$K_P = \frac{V_S}{\epsilon}$$

K_P [1/s]: Position loop gain
V_S [PPS]: Steady speed reference

e: (pulse): Steady error

(The number of pulses in the error counter at steady speed.)

COMPARISON WITH PREVIOUS SERVOPACKS

This appendix describes the different functions provided on the new SGDB SERVOPACKs.

B.1	Functional Differences	B - 2
	B.1.1 Dynamic Brake (DB)	B-2
	B.1.2 Contact Input Speed Control	B - 2
B.2	Different Parameters and Alarms	B - 3
	B.2.1 Parameters	B - 3
	B.2.2 Alarms	B - 3

B.1 Functional Differences

B.1.1 Dynamic Brake (DB)

The dynamic brake (DB) in SGDB SERVOPACKs with a capacity of 15 kW or less operates when a power loss occurs because the dynamic brake driver uses a normally-closed contact relay or a thyristor.

The dynamic brake in SGDB SERVOPACKs with a capacity between 22 kW and 55 kW functions differently according to the SERVOPACK used as follows:

The dynamic brake driver uses a 24-V DC contactor. If the control power supply is interrupted, 24 VDC can be maintained for approximately 2 seconds only.

Resistors for dynamic brake control are not built into 22- to 55-kW, 400-V SERVOPACKs, unlike SERVOPACKs with a capacity of 15 kW or less. Connect a Dynamic Brake Unit (JUSP-DB) or other type of dynamic brake resistor (prepared by the customer) to the dynamic brake connection terminals, DU, DV, and DW.

A dynamic brake resistor does not need to be connected if the dynamic brake function is not required.

B.1.2 Contact Input Speed Control

The contact input speed control function available for SERVOPACKs with a capacity of 15 kW or less is not available for 22- to 55-kW SGDB SERVOPACKs.

Refer to Chapter 3 in the Σ -Series SGM \square /SGDB User's Manual (Manual No.: TSE-S800-16) for more details on contact input speed control.

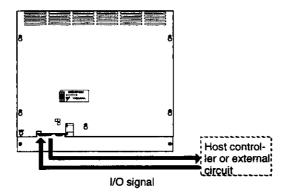
B.2 Different Parameters and Alarms

B.2.1 Parameters

The function of the following parameters differ when the contact input speed control function is not available, as shown below.

Parameter	SERVOPACKs of 15 kW or less	SERVOPACKs of 22 kW to 55 kW
Cn-1F	Contact input speed control (Speed 1)	Not used.
Cn-20	Contact input speed control (Speed 2)	Not used.
Cn-21	Contact input speed control (Speed 3)	Not used.

B.2.2 Alarms


The following alarm occurs in SGDB SERVOPACKs with a capacity of 22 kW to 55 kW only. It does not occur in SERVOPACKs with a capacity of 15 kW or less.

Digital Operator	Alarm Output				Cause	Remedy	
Display and Alarm Name	Alarm Code Output		ALM]			
Alarm Name	ALO3	ALO2	ALO3	Output			
AF4	OFF	ON	OFF	OFF	Main circuit	Replace	
Main circuit contactor error					defective.	SERVOPACK.	

List of I/O Signals

This appendix lists I/O signal terminals (connector 1CN) on SERVOPACKs which connect to a host controller or external circuit.

IMPORTANT

- 1. Refer to Chapter 3 for details of how to use I/O signals.
- 2. Note that the functions of I/O signal terminals differ according to the memory switch (Cn-01, Cn-02) settings.

List of Input Output Signals

Number "x.x.x" in box represents a section number corresponding to each signal name. For example, 3.2.1 represents Section 3.2.1.

1CN Termi- nal Number		Signal name		
1	SG	Signal ground		<u> </u>
2	SG	Signal ground	<u> </u>	
3	PL1	Power supply for open collector reference	3.2.2	*2
4	SEN	Sensor ON	3.8.5	*6
5	V-REF	Speed reference input	3.2.1	*1
6	SG	Signal ground	5.2.1	
7	PULS	Reference pulse input	[322]	*2
8	/PULS	pame input	3.2.2	
9	T-REF	Torque reference input	3.2.6	*1
10	SG	Signal ground	5.2.0	ļ
11	SIGN	Reference sign input	3.2.2	*2
12	/SIGN		5.2.2	~
13	PL2	Power supply for open collector reference	3.2.2	*2
14	/CLR	Clear signal input	3.2.2	*2
15	CLR		3.2.2	1
16	TRQ-M	Torque monitor	3.2.11	*3
17	VTG-M	Speed monitor	3.2.11	*3
18	PL3	Power supply for open collector reference	3.2.2	*2
9	PCO	Phase-C output signal	3.2.3	
20	/PCO		5.2.5	
21	BAT	Back-up battery input	3.8.5	*6
22	BAT0	7	2.0.5	•
23	+12V	Power supply for analog reference	3.2.1	*1
.4	-12V	7	<u> </u>	
25	/V-CMP/ /COIN	Speed coincidence output/positioning completion signal	3.7.4 3.7.3	*4
6	/V-CMP/ /COIN	Speed coincidence output/positioning completion signal	3.7.4 3.7.3	*4
7	/TGON+	Rotating detection	3.7.5	*4
8	/TGON-	1		

29	/S-RDY+	Servo ready	3.7.7 *4
30	/S-RDY-		
31	ALM+	Alarm output	3.7.1
32	ALM-		
33	PAO	Phase-A output signal	3.2.3
34	/PAO		
35	PBO	Phase-B output signal	3.2.3
36	/PBO		
37	ALO1	Alarm code output	3.7.1
38	ALO2		
39	ALO3		
40	/S-ON	Servo ON	3.7.2
41	/P-CON	Proportional control (P control) reference	3.2.1 *5
42	P-OT	Forward drive disabled	3.1.2
43	N-OT	Reverse drive disabled	3.1.2
44	/ALMRST	Alarm reset	3.7.1
45	/P-CL	Forward torque limit	3.1.3 *5
46	/N-CL	Reverse torque limit	3.1.3 *5
47	+24 V IN	24V external power supply input	3.2.4
48	PSO	Phase-S input signal	3.8.5 *6
49	/PSO	7	
50	FG	Frame ground	3.2.3
		<u></u>	

- * 1. Used for analog reference See page C -4
- * 2. Used for pulse reference See page C -4
- * 3. Specifications vary depending on bits 6, 7 of Cn-02 refer to page C -5
- * 4. Specifications vary according to setting values of Cn-2D $\,$... refer to page E 1
- * 5. Specifications vary according to setting values of Cn-2B $\,$. . refer to page C -5
- * 6. Used only for absolute encoder (used only when bit E of Cn-01 equal to 1)

*1 Signals used for analog reference

For speed control

Specifica- tions	Speed control Cn-02 Bit 8 = 0 Bit 9 = 0		Speed ana	Speed control with torque limit by analog voltage reference Cn-02 Bit 8 = 1 Bit 9 = 0		control with torque feed- forward
Setting 1CN Terminal number						Cn-02 Bit 8 = 0 Bit 9 = 1
5	V-REF	Speed reference	V-REF	Speed reference	V-REF	Speed reference
9		Terminal unused	T-REF	Torque limit input	T-REF	Torque feed- forward reference

For torque control

Specifications Setting Cn-02 Bit 2= 0 1CN Terminal number		Torque control	Torque control with speed limit be analog voltage reference Cn-02 Bit 2= 1		
5		Terminal unused	V-REF	Speed limit value	
9	T-REF	Torque reference	T-REF	Torque reference	

*2 Signals used for pulse reference

Specifica- tions	Sign +	Sign + pulse train input reference		pulse + CW pulse reference	Two phase pulse reference with 90° phase difference		
Setting 1CN Terminal number		Cn-02 Bit 5 = 0 Bit 4 = 0 Bit 3 = 0		Cn-02 Bit 5 = 0 Bit 4 = 0 Bit 3 = 1	Cn-02 b = 0, 1, 0 = 0, 1, 1	oits 5, 4, 3 (x1 multiplication) (x2 multiplication) (x4 multiplication)	
7	PULS	Reference pulse input	PULS	Forward reference pulse	PULS	Phase-A reference pulse	
8	/PULS		/PULS input (CCW)		/PULS	input	
11	SIGN	Reference sign input	SIGN	Reverse reference pulse	SIGN Phase-B reference n	Phase-B reference pulse	
12	/SIGN		/SIGN	in a control		input	

*3 Analog monitor signals

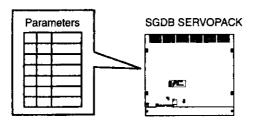
Control mode					Position control	Torque control	
Setting 1CN Terminal number		Cn-02 Bit 6 = 0	Cn-02 Bit 6 = 1				
16	TRQ-M	Torque monitor	TRQ-M	Speed reference monitor	Reference pulse speed monitor	×	
Setting 1CN Terminal number	Cn-02 Bit 7 = 0				Cn-02 3it 7 = 1		
17	VTG-M	Speed monitor	VTG-M	×	Position error monitor	×	

Note: x means don't care for voltage values.

*5

Specifica- tions		Speed control Position control		Torque control
Setting 1CN Terminal number		Cn-2B = 0, 1		Cn-2B = 2
41	/P-CON	Proportional control reference		Terminal unused
45	/P-CL	Forward (Reverse) torque	/P-CL	Forward (Reverse) torque
46	/N-CL	/N-CL limit		limit

Specifica- tions	Position		Position Torque		Position control with reference pulse inhibit function	
Setting 1CN Terminal number		Cn-2B = 7, 8, 9		Cn-2B = 10		Cn-2B = 11
41	/P-CON	Control mode switching signal	/P-CON	Zero clamp operation reference	/P-CON	Reference pulse inhibit reference
45	/P-CL	CL Forward (Reverse)		/P-CL Forward (Reverse)		Forward (Reverse)
46	/N-CL	torque limit	/N-CL	N-CL torque limit		torque limit



List of Parameters

 Σ -Series SERVOPACKs provide many functions, and have parameters called "parameters" to allow the user to select each function and perform fine adjustment. This appendix lists these parameters.

Parameters are divided into the following two types:

Memory switch Cn-01, Cn-02	Each bit of this switch is turned ON or OFF to select a function.
Parameter setting	A numerical value such as a torque limit value or speed loop gain is set
Cn-03 and later	in this constant.

IMPORTANT

- 1. Refer to Chapter 3 for details of how to use parameters.
- 2. For details of how to set parameters, refer to Section 4.1.6 Operation in Parameter Setting Mode.

List of Parameters (Parameter Setting)

Category	Parame- ter No.	Code	Name	Unit	Lower Limit	Upper Limit	Factory Setting	Re- mar ks		
	Cn-00	Not a parame	eter. (Cn-00 is used to select	a special mo	de for digital	operator)				
	Cn-01	Memory swit	Memory switch (See page D -4)bit E (encoder selection) *2							
	Cn-02	Memory swit	tch (See page D -5)	-	*2(E	xcept bit 6, 7,	E)			
Basic Constants	Cn-11	PULSNO	Number of encoder pulses	P/R	513	32768	*1	*2		
İ	Cn-2B	CTLSEL	Control method selection	*1	0	11	0	*2		
	Cn-2A	MTRSEL	Motor selection	*1	0	254	*1 · · · · · · · · · · · · · · · · · · ·	*2		
Gain Related Constants	Cn-03	VREFGN	Speed reference adjustment gain	(r/min)/V	10	2000	*1	14 157 33 31		
	Cn-04	LOOPHZ	Speed loop gain	Hz	1	2000	80	*3		
	Cn-05	PITIME	Speed loop integration time constant	0.01 ms	200	51200	2000	*3		
	Cn-1A	POSGN	Position loop gain	1/s	1	1000	40	*3		
	Cn-1C	BIASLV	Bias	r/min	0	450	0	-		
	Cn-1D	FFGN	Feed-forward	%	0	100	0	 		
	Cn-17	TRQFIL	Torque reference filter time constant	0.1 ms	0	250	16			
	Cn-28	NFBCC	Speed loop compensation constant		0	100	0			
	Cn-0C	TRQMSW	Mode switch torque ref- erence	%	0	800	200			
	Cn-0D	REFMSW	Mode switch speed reference	r/min	0	10000	0			
	Cn-0E	ACCMSW	Mode switch acceleration	10 r/min/s	0	3000	0			
	Cn-0F	ERPMSW	Mode switch error pulse	reference unit	0	10000	0			
Reference re-	Cn-0A	PGRAT	PG dividing ratio	P/R	16	32768	*1			
lated constants	Cn-24	RATB	Electronic gear ratio (nu- merator)		1	65535	4	*2		
	Cn-25	RATA	Electronic gear ratio (de- nominator)		1	65535	1	*2		
	Cn-07	SFSACC	CC Soft start acceleration time		0	10000	0	*4		
	Cn-23	SFSDEC	Soft start deceleration time	ms	0	10000	0	*4		
	Cn-26	ACCTME	Position reference acceleration/deceleration constant	0.1 ms	0	640	0			
	Cn-27	FFFILT	Feed-forward filter	0.1 ms	0	640	0			

Category	Parame- ter No.	Code	Name	Unit	Lower Limit	Upper Limit	Factory Setting	Re- mar ks
Torque Related Constants			Forward rotation torque limit	%	0	800	800	
	Cn-09	TLMTR	Reverse rotation torque limit	%	0	800	800	
	Cn-18	CLMIF	Forward external current limit	%	0	800	100	
	Cn-19	CLMIR	Reverse external current limit	%	0	800	100	
	Cn-06	EMGTRQ	Emergency stop torque	%	0	800	800	
:	Cn-13	TCRFGN	Torque reference gain	0.1 V/ 100%	10	100	30	
:	Cn-14	TCRLMT	LMT Speed limit for torque control		0	10000	10000	
Sequence Re-	Cn-2D	OUTSEL	Output signal selection	*1	110	666	210	
lated Constants	Cn-0B	TGONLV	Zero-speed level	r/min] 1	10000	20	
	Cn-29	ZCLVL	Zero clamp level	r/min	0	10000	10	
	Cn-22	VCMPLV	Speed coincidence signal output range	r/min	0	100	10	
	Cn-1B	COINLV	Positioning completion range	reference unit	0	250	7	
	Cn-1E	OVERLV	Overflow	256 reference unit	1	32767	1024	
	Cn-12	BRKTIM	Time delay from brake reference until servo OFF	10 ms	0	50	0	
	Cn-15	BRKSPD	Speed level for brake ref- erence output during mo- tor operation	r/min	0	10000	100	
	Cn-16	BRKWAI	Output timing of brake reference during motor operation	10 ms	10	100	50	
Other Constants	Cn-10	JOGSPD	Jog speed	r/min	0	10000	500	
	Cn-1F	_	Not used	-	0	90	0	
	Cn-20	_	Not used	_	0	90	0	
	Cn-21		Not used		0	90	0	
	Cn-2C	PGPWR	PG power supply voltage change	0.1 mV	52000	58000	52500	

^{*} _____: Parameters must be set and checked before turning the motor power ON.

Note: 1. Refer to page D -7.

^{2.} After changing the setting, always turn the power OFF, then ON. This makes the new setting valid.

^{3.} Automatically set by auto tuning function

^{4.} To use soft start function, always set both Cn-07 and Cn-23.

List of Parameters (Memory Switch Setting) (1)

	Param- eter No.	Bit No.		S	etting	······································	Factor Settin			
Input signal	Cn-01	0	0		1	 	0			
enable/disable			Uses servo ON in	put (/S-ON).	Does not use serv Servo is always (o ON input (/S-ON).	-			
	1	1	0		1		0			
		ļ	Uses SEN signal i solute encoder is t	nput (SEN) when abused.	when absolute en	N signal input (SEN) coder is used. SERVO- ally treats signal voltage				
		2	0		1		10			
		<u> </u> 	Uses forward rotat (P-OT).	ion prohibited input	Does not use forwinput (P-OT). For possible.	vard rotation prohibited ward rotation is always				
		3	0		1		0			
			Uses reverse rotation prohibited inpu (N-OT).		Does not use reve input (N-OT). Rev possible.	rse rotation prohibited verse rotation is always				
Reserved		4	Reserved : Setting	= 0 (do not change the			0			
Operation per-		5	0	<u></u>	1		0			
formed at recovery from power loss			Resets servo alarm ery from its momen	status at power recov- ntary power loss.		alarm status at power mentary power loss.				
Sequence selec-		6	0		1		0			
ion at alarm condition			Stops the motor by brake (DB)at base I	Stops the motor by applying dynamic brake (DB)at base block. Makes the motor coast to a block.						
		7 0 1			0					
			At base block, stop ing dynamic brake DB.	s the motor by apply- (DB)and then release	At base block, stop ing dynamic brake lease DB.					
1		8	0		1		0			
			Stops the motor acc when overtravel is (N-OT).	ording to bit 6 setting detected (P-OT,	Decelerates the moing the torque spec overtravel is detect	tor to a stop by apply- ified in Cn-06 when				
		9	0		1	(1 0 1, 1 (0 1).	0			
						When overtravel is detected (P-OT, N-OT), decelerates the motor to a stop by applying the torque specified in Cn-06 and then performs Servo OFF.		When overtravel is N-OT), decelerates applying the torque and then turns the z	the motor to a stop by specified in Cn-06	Ü
rocess selection].	Α	0		1		0			
or Servo OFF		ŀ	Clears error pulse at	Servo OFF	Does not clear error		U			
lode switch	[]	В	0		Does not clear error pulse at Servo OFF		0			
election			Uses mode switch for Cn-01 bits D, C	unction. Follows	Does not use mode					
	1	D·C	0.0	0 · 1	1.0	1.1	0.0			
			Uses internal torque reference as a condition	Uses speed reference as a condition (Level setting:	Uses acceleration as a condition	Uses error pulse as a condition				
			(Level setting : Cn-0C)	(Level setting : Cn-0D)	(Level setting : Cn-0E)	(Level setting : Cn-0E)				

	Parame- ter No.	Bit No.	Sett	ting	Factory Setting
Encoder selec-	Cn-01	Е	0	1.	0
tion			Uses incremental encoder.	Uses absolute encoder.	
Reserved		F	Reserved: Setting = 0 (do not change the	setting)	0

^{*} Parameters must be set and checked before turning the motor power ON.

Note: For the Cn-01 memory switch, always turn the power OFF, then ON after changing the setting. This makes the new setting valid

List of Parameters (Memory Switch Setting) (2)

	Pa- rame- ter No.	Bit No.			Set	ting			Facto- ry Set- ting
Rotation direction	Cn-02	0	0	0 1					
selection			Defines counted tion as forward	erclockwise (CC) I rotation.	V) rota-		s cłockwise (CW otation (reverse re		
Home position		1	0			1			0
error processing selection			Detects home plute encoder is	position error (whused).	en abso-	Does n	ot detect home po	osition error.	
Analog speed],	2	0			1			0
limit function			Does not use a	nalog speed limit	function	Uses a	nalog speed limit	function	
Reference pulse	}	5 · 4 · 3	0.0.0	0.0.1	0.1.0		0-1-1	1.0.0	0.0.0
form			Sign + Pulse	CW+CCW	Phase-l phase-l multipl		Phase-A + phase-B (x2 multiplication)	Phase-A + phase-B (x4 multiplication)	
Analog monitor]	6	0			1			0
selection			Outputs torque to TRQ-M			Outputs reference speed to TRQ-M			
		7	0			1			0
			Outputs speed	to VTG-M		Output	s position error to	vTG-M	
Analog current]	8	0			1			0
limit function			Does not use analog current limit function Uses analog current limit function						
Torque feed-for-]	9	0 1						0
ward function			Does not use torque feed-forward function Uses torque feed-forward function						
Clear signal]	Α	0 1						0
				r counter when a			the error counter f an error counter	_	
Reserved		В	Reserved : Set	ting = 0 (do not o	hange the	setting)			0
Torque filter]	С	0			1			1
			Uses torque fil	ter as primary fil	ter	Uses to	orque filter as sec	ondary filter	
Reference pulse]	D	0			1			0
form			Does not inver	t reference pulse	logic	Inverts	reference pulse	logic	
Position error		E	0			1			0
monitor			Displays position error in x1 reference units while in monitor mode Displays position error in x100 reference units while in monitor mode						
Reference pulse]	F	0			1			0
filter			Selects filter ti kpps max)	me constant 'sma	ıll'. (450	Selects kpps n	filter time const ax)	ant 'large'. (200	

Note: For the Cn-02 memory switch, always turn the power OFF, then ON after changing the setting. This makes the new setting valid. However, bits 6, 7, E become valid immediately after setting

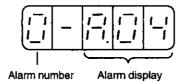
*1 Control method selection (Cn-2B) Setting Values

Setting values	Control	Control method					
0	Speed control (analog reference)	·					
1	Position control (pulse train reference)						
2	Torque control (analog reference)						
3	Do not set.						
4	Do not set.						
5	Do not set.						
6	Do not set.						
7	Position control (pulse train reference)	↔Speed control (analog reference)					
8	Position control (pulse train reference)	↔Torque control (analog reference)					
9	Torque control (analog reference)	↔Speed control (analog reference)					
10	Speed control (analog reference)	++Zero clamp control					
11	Position control (pulse train reference)	↔Position control (inhibit)					

Outputs signal selection (CN-2D) setting values
 Selects which function of signal sent to output signal of 1CN.

1st decimal digit	to select function of CN-25, 26 (/COIN//V-CMP)
2nd decimal digit	to select function of CN-27, 28 (/TGON)
3rd decimal digit	to select function of CN-29, 30 (/S-RDY)

Setting value	Function
0	/COIN//V-CMP (only assigned to 1CN-25, 26)
1	/TGON
2	/S-RDY
3	/CLT
4	/BK
5	OL warning
6	OL alarm


• Factory settings

Group	SERVOPACK models	Applicable motor type	Cn-2A
2BA	SGDB-2BAD	SGMB-2BA□A	211
		SGMB-2BA□B	215
3ZA	SGDB-3ZAD	SGMB-3ZA□A	213
		SGMB-3ZA□B	214
3GA	SGDB-3GAD	SGMB-3GA□A	216
		SGMB-3GA□B	217
2BD	SGDB-2BDD	SGMB-2BA□D	218
		SGMB-2BA⊟E	219
3ZD	SGDB-3ZDD	SGMB-3ZA□D	220
		SGMB-3ZA□E	226
3GD	SGDB-3GDD	SGMB-3GA□D	227
		SGMB-3GA□E	228
4ED	SGDB-4EDD	SGMB-4EA□D	229
		SGMB-4EA⊟E	230
5ED	SGDB-5EDD	SGMB-5EA⊟D	231
		SGMB-5EA□E	232

List of Alarm Displays

SGDB SERVOPACK allows up to 10 last alarms to be displayed at a digital operator. This function is called a trace-back function.

This appendix provides the name and meaning of each alarm display.

For details of how to display an alarm, refer to the following section:

Section 4.2.1 Operation in Alarm Trace-back Mode

For the cause of each alarm and the action to be taken, refer to the following section:

Section 6.2.1 Troubleshooting Problems with Alarm Display

Alarm Display

Alarm	1	Alarm	Output		Alarm Name	Meaning	Remarks	
Display on Digital	Alar	m Code (Dutput	ALM	7			
Operator	ALO1	ALO2	ALO3	Out-	Out- put			
A.00	OFF	OFF	OFF	OFF	Absolute data er- ror	Absolute data fails to be received, or received absolute data is abnormal.	For absolute encoder only	
A.02	OFF	OFF	OFF	OFF	Parameter break- down	Checksum results of parameters are abnormal.		
A.04	OFF	OFF	OFF	OFF	Parameter setting error	The parameter setting is outside the allowable setting range.		
A.10	ON	OFF	OFF	OFF	Overcurrent	An overcurrent flowed through the power transistor.		
A.30	ON	ON	OFF	OFF	Detection of re- generative error	Regenerative circuit is faulty		
A.31	ON	ON	OFF	OFF	Position error pulse overflow	Position error pulse has exceeded the value set in parameter Cn-1E (overflow).		
A.40	OFF	OFF	ON	OFF	Main circuit voltage error detection	Main circuit voltage is abnormal		
A.51	ON	OFF	ON	OFF	Overspeed	Rotation speed of the motor has exceeded detection level	Detection level = Maximum rotation speed x 1.1 or x1.2	
A.71	ON	ON	ON	OFF	Overloaded (high load)	The motor was running for several seconds to several tens of seconds under a torque largely exceeding ratings.		
A.72	ON	ON	ON	OFF	Overloaded (low load)	The motor was running continuous- ly under a torque largely exceeding ratings		
A.80	OFF	OFF	OFF	OFF	Encoder error	The number of pulses per encoder revolution is abnormal.		
A.81	OFF	OFF	OFF	OFF	Absolute encoder backup error	All three power supplies for the absolute encoder (+5 V, battery and internal capacitor) have failed.	For 12 bit absolute encoder only	
A.82	OFF	OFF	OFF	OFF	Absolute encoder checksum error	The checksum results of absolute encoder memory is abnormal.	For 12 bit absolute encoder only	
A.83	OFF	OFF	OFF	OFF	Absolute encoder battery error	Battery voltage for the absolute encoder is abnormal.	For 12 bit absolute encoder only	
A.84	OFF	OFF	OFF	OFF	Absolute encoder data error	Received absolute data is abnormal.	For 12 bit absolute encoder only	
A.85	OFF	OFF	OFF	OFF	Absolute encoder overspeed	The motor was running at a speed exceeding 400 r/min when the absolute encoder was turned ON.	For 12 bit absolute encoder only	

Checksum

An automatic check function for a set of data such as parameters. It stores the sum of parameter data, recalculates the sum at specific timing, and then checks whether the stored value matches the recalculated value. This function is a simple method of checking whether a set of data is correct.

Alarm Dis-		Alarm	Output		Alarm Name	Meaning	Remarks
play on Digital Op-	Aları	n Code C	Output	ALM			1
erator	ALO1	ALO2	ALO3	Out-			
A.A1	ON	ON	ON	OFF	Heat sink over- heated	Heat sink of SERVOPACK was overheated	
A.b1	OFF	OFF	OFF	OFF	Reference input read error	SERVOPACK CPU failed to detect reference input.	
A.CI	ON	OFF	ON	OFF	Servo overrun detected	The servomotor (encoder) ran out of control.	
A.C2	ON	OFF	ON	OFF	Encoder output phase error	Phases A, B and C output by the encoder are abnormal.	
A.C3	ON	OFF	ON	OFF	Encoder phase-A, -B dis- connection	Wiring in encoder phase A or B is disconnected.	
A.C4	ON	OFF	ON	OFF	Encoder phase-C disconnection	Wiring in encoder phases C is disconnected.	
A.F1	OFF	ON	OFF	OFF	Power lines open phase	One phase is not connected in the main power supply	
A.F3	OFF	ON	OFF	OFF	Power loss error	A power interruption exceeding one cycle occurred in AC power supply.	Only when bit 5 of Cn-01 set to 1
A.F4	OFF	ON	OFF	OFF	Main circuit con- tactor error	Main circuit contactor is defective.	
CPF00	Undefine	ed			Digital operator transmission er- ror 1	Digital operator fails to communicate with SERVOPACK even five seconds after power is turned ON.	These alarms are not stored in alarm trace-back memory.
CPF01	Undefined			,	Digital operator transmission er- ror 2	Transmission error has occurred five consecutive times.	
A.99	OFF	OFF	OFF	ON	Not an error	Normal operation status	·

OFF: Output transistor is OFF

ON: Output transistor is ON

INDEX

12-bit absolute encoders, 3 - 90 1CN connector dimensional drawings, 5 - 37 specifications, 5 - 37 24 V I/O Power Supply, 3 - 26 absolute data contents, 3 - 94 exchange sequence, 3 - 94 transmitting sequence, 3 - 95 absolute data error, 6 - 5 absolute encoder, setup, 3 - 92 absolute encoder back-up error, 6 - 14 absolute encoder battery error, 6 - 16 absolute encoder data error, 6 - 17 absolute encoder error, 3 - 71, 6 - 13 absolute encoder overspeed, 6 - 18 absolute encoder sum-check error, 6 - 15 absolute value detection system, 3 - 89 AC servos, 1 - 1 alarm code output, 3 - 69, 3 - 71 alarm display, 3 - 71, 3 - 97 list, E - 2 troubleshooting, 6 - 5 alarm history, 4 - 33 alarm output signals, wiring, 3 - 69 alarm traceback data, clearing, 4 - 33 alarm traceback mode, 4 - 17 alarms, servo, reset, 4 - 4 alignment, 2 - 8 radial load, 2 - 10 thrust load, 2 - 10 analog monitor, 3 - 42 angular acceleration, rating, 5 - 11 anticorrosive paint, 2 - 7

autotuning, 3 - 60, 4 - 25

Digital Operators, 4 - 22

adjustment of position-control Servopacks, A - 8

adjustment of speed-control Servopacks, A - 4

Number

precautions, 4 - 22

В

ball screw, 1 - 6, 3 - 29 ball screw pitch, 3 - 28 battery, 3 - 92 absolute encoder, 5 - 48 battery (+)/(-), 3 - 24 minimum voltage, 6 - 4 replacement, absolute encoder, 6 - 4 belt, 3 - 29 bias setting, 5 - 20 bit data, 4 - 6 bits, turning ON and OFF, 4 - 12 brake interlock output, 2 - 34 brake power supply, 2 - 15 dimensional drawings, 5 - 49 internal circuit, 5 - 49 specifications, 5 - 49

C

cables, 2 - 16, 3 - 82 encoders dimensional drawings, 5 - 43 specifications, 5 - 43 for connecting PC and Servopack, 5 - 66 for PG, 2 - 16 specifications, 5 - 35 tension, 3 - 82 choke coil, 3 - 23 circuit time constant, 5 - 20 clamped status, 3 - 40, 3 - 51 class 3 ground, 3 - 82 coasting, 3 - 50 comparators, 1 - 9 connections contact input signal terminals, 3 - 26 contact output signal terminals, 3 - 27 connector kit, 2 - 17 connector terminal block conversion unit, 5 - 39 connectors 1CN, test run, 2 - 29 2CN, reverse rotation mode, 3 - 6

absolute encoder, 3 - 101 Digital Operator, 3 - 102	simple motor check, 4 - 19 test run, 2 - 30
incremental encoder, 3 - 100	dimensional diagrams, noise filter, 5 - 51
terminal layouts, 3 - 99	·
Servopack, 3 - 99 constant setting, 3 - 4	dimensional drawings, 5 - 25 1CN connector, 5 - 37
contact I/O, 3 - 26	brake power supply, 5 - 49 cables, encoders, 5 - 43
contact input signals, 3 - 26	Digital Operators, 5 - 33
contact output signals, 3 - 27	Encoder Signal Converter Unit, 5 - 64 regenerative resistor unit, 5 - 53
control block diagram, 3 - 32	Servomotors, 5 - 25–5 - 59
control mode, 5 - 19	Servopacks, 5 - 30 variable resistors, 5 - 64
control panel, conditions, 2 - 13	disc table, 3 - 29
control power input terminals, 2 - 17, 2 - 20	·
control signal, 5 - 20	disconnection, PG signal line, 3 - 71
· ·	dividing, 3 - 22
controlled systems components, 1 - 6	dividing ratio setting, 3 - 96
meaning, 1 - 5	drive systems, 1 - 6
coupling, 1 - 6, 2 - 8	dynamic brake, 3 - 50 stop mode, 3 - 8
current, rating, 5 - 11	Dynamic Brake Unit, 5 - 57
current detection offset, manual adjustment mode, 4 - 35	,
current loop, 3 - 32	E
D	electronic gear function, 3 - 28 setting, 3 - 28
de-energization operation, 3 - 52	electronic gear ratio, 3 - 28
deceleration stop mode, 3 - 8	for different load mechanisms, 3 - 31 load travel distance per revolution of load shaft in reference
decoupling capacitor, 3 - 23	units, 3 - 29
denominator, electronic gear ratio, 3 - 30	machine specifications, 3 - 28 number of encoder pulses for the SGM Servomotor, 3 - 28
detectors encoders, 1 - 8	reference unit, 3 - 29
meaning, 1 - 5	encoder output, 3 - 22 signals, divided, 3 - 22
main circuit, 2 - 22	
Digital Operator transmission error, 3 - 71	Encoder Output Phase-A, 3 - 23
Digital Operator transmission error 1, 6 - 26	Encoder Output Phase-B, 3 - 23
Digital Operator transmission error 2, 6 - 27	Encoder Output Phase-C, 3 - 23
· · · · · · · · · · · · · · · · · · ·	Encoder Output Phase-S, 3 - 24
Digital Operators, 1 - 14, 2 - 15 alarm traceback mode, 4 - 17	encoder phase detection error, 6 - 21
autotuning, 4 - 22	encoder phase-A, -B disconnection, 6 - 22
connection, 4 - 2	encoder phase-C disconnection, 6 - 23
dimensional drawings, 5 - 33	encoder pulses, 3 - 28
mode selection, 4 - 5 monitor mode, 4 - 14	number per revolution, 3 - 46
parameter setting mode, 4 - 9	Encoder Signal Converter Unit
status display mode, 4 - 6	dimensional drawings, 5 - 64
motor operation, 4 - 20	specifications, 5 - 64
selection, 5 - 10	encoders
servo alarm reset, 4 - 4	absolute, 1 - 8, 3 - 89

battery, 5 - 48	H
battery replacement, 6 - 4	1 1 0 71
home position error detection, 3 - 97 cables	heatsink overheat, 3 - 71
dimensional drawings, 5 - 43	high level, 3 - 21
specifications, 5 - 43	high-speed switching elements, 3 - 83
incremental, 1 - 8	holding brake, 3 - 52
power voltage adjustment, 3 - 48 specification, 3 - 25	home position error detection, 3 - 98
error counter, 3 - 40	host controllers, 1 - 5, 1 - 10, 2 - 15, 2 - 23
clearing, 3 - 21	hot start, 5 - 22
error pulse monitor level, 3 - 42	humidity, ambient/storage, 5 - 19
external torque limit, 3 - 11	
external torque limit input, 3 - 12	l
forward, 3 - 12	I/O signal terminals
reverse, 3 - 12	connections, 2 - 23
	list, C - 2
_	I/O signals, 3 - 4, 5 - 21
F	impact resistance, 5 - 17
feed-forward control, 3 - 62	INHIBIT function See also reference pulse inhibit function
feed-forward compensation, 5 - 20	initial incremental pulse, 3 - 94
feed-forward gain, 3 - 32	input impedance, 5 - 20
feedback, 5 - 19	input power supply, 5 - 19
	input pulse form, 5 - 20
feedback control, meaning, 1 - 3	input pulse frequency, 5 - 20
flowchart, servomotor selection, 5 - 5	input pulse multiply function, 3 - 20
forward overtravel, 3 - 6	input signal terminals
frequency characteristics, 5 - 20	alarm reset, 3 - 72
frequency dividing ratio, 5 - 21	battery, 3 - 24 error counter clear input, 3 - 21
fuse, 3 - 83	forward external torque limit input, 3 - 12
1400,0	forward rotation prohibited, 3 - 6
	I/O power supply, 3 - 26 proportional/integral control, 3 - 16
G	reference pulse input, 3 - 18
	reference sign input, 3 - 18
gain	reverse external torque limit input, 3 - 12 reverse rotation prohibited, 3 - 6
adjustment, 3 - 57, 3 - 60 AC Servopack, A - 2	SEN signal input, 3 - 24
setting references, load inertia ratio, A - 12	servo ON, 3 - 72
gear ratio, 3 - 29	signal ground for speed reference input, 3 - 13, 3 - 35 signal ground for torque reference input, 3 - 35
	speed reference input, 3 - 13, 3 - 35
gears, 1 - 6	torque reference input, 3 - 35 zero-clamp speed control, 3 - 51
ground terminal, 2 - 17, 2 - 20	input signals, 2 - 36, 5 - 20
ground wire, 3 - 82	inspection, 6 - 2, 6 - 3
ground-fault interrupter, 2 - 3	Servomotors, 6 - 2
grounding, 2 - 3	Servopacks, 6 - 3
wiring, 3 - 84	installation, 2 - 5

Servomotors, 2 - 7 alignment, 2 - 8 Servopacks, 2 - 12 side by side, 2 - 13	mode selection, Digital Operators, 4 - 5 mode switch, 3 - 63 detection points
instantaneous maximum current, 5 - 11	error pulse, 3 - 66 motor acceleration, 3 - 66
instantaneous maximum speed, 5 - 11	speed reference, 3 - 65
instantaneous peak torque, 5 - 11	torque reference, 3 - 64
internal torque limit, 3 - 9	molded-case circuit breaker See also MCCB
_	moment of inertia, 5 - 11
J	monitor mode, 4 - 14
jog speed, 3 - 45	monitor number, 4 - 14
L	motor checking, Digital Operators, 4 - 19 operation, Digital Operators, 4 - 20
The second of	motor connection terminal, 2 - 17, 2 - 20
limit switch, 3 - 6 overtravel limit function, 3 - 6	motor rotation, direction, 3 - 5, 5 - 16
line driver output, 3 - 41	motor shaft, 3 - 29
lithium battery, 3 - 92, 6 - 4	movable table, 1 - 6
load configuration, 3 - 29	multiconductor shielded twisted-pair cable, 3 - 82
load inertia, 5 - 23	
gain settings, A - 12	N
load mechanisms, 3 - 31	V 07:
load shaft, 3 - 29	N-OT input signal, 3 - 7
rotating speed, 3 - 30	no load, test run, 2 - 27
loads allowable radial load, 5 - 16 allowable thrust load, 5 - 16	noise control, 2 - 3 filter, 2 - 15, 3 - 82 dimensional diagrams, 5 - 51
location, 5 - 19	installation, 3 - 85 specifications, 5 - 51 wiring, 3 - 83
M	numerator, electronic gear ratio, 3 - 30
machine data table, 5 - 7	•
machine rigidity, 4 - 25 selection, 4 - 22	offset, 3 - 49, 3 - 58
magnetic contactor, 2 - 15	adjustment range, 4 - 31
main power input terminals, 2 - 17, 2 - 20	setting units, 4 - 31
main power input terminals, 2 - 17, 2 - 20 main power voltage error, 3 - 71	one-line grounding, 3 - 84
	•
main power voltage error, 3 - 71 maintenance, 6 - 2, 6 - 3 Servomotors, 6 - 2	one-line grounding, 3 - 84
main power voltage error, 3 - 71 maintenance, 6 - 2, 6 - 3 Servomotors, 6 - 2 Servopacks, 6 - 3	one-line grounding, 3 - 84 output, rating, 5 - 11 output form, 5 - 21 output phase, form, 3 - 24
main power voltage error, 3 - 71 maintenance, 6 - 2, 6 - 3 Servomotors, 6 - 2 Servopacks, 6 - 3 MCCB, 2 - 15, 3 - 83, 5 - 50	one-line grounding, 3 - 84 output, rating, 5 - 11 output form, 5 - 21
main power voltage error, 3 - 71 maintenance, 6 - 2, 6 - 3 Servomotors, 6 - 2 Servopacks, 6 - 3 MCCB, 2 - 15, 3 - 83, 5 - 50 mechanical characteristics, 5 - 16	one-line grounding, 3 - 84 output, rating, 5 - 11 output form, 5 - 21 output phase, form, 3 - 24 absolute encoder, 3 - 24
main power voltage error, 3 - 71 maintenance, 6 - 2, 6 - 3 Servomotors, 6 - 2 Servopacks, 6 - 3 MCCB, 2 - 15, 3 - 83, 5 - 50	one-line grounding, 3 - 84 output, rating, 5 - 11 output form, 5 - 21 output phase, form, 3 - 24 absolute encoder, 3 - 24 incremental encoder, 3 - 24

frame ground, 3 - 24	forward external torque limit, 3 - 11
output signal ground common, 3 - 27	forward external torque limit input, 3 - 12
overload alarm, 3 - 79	forward rotation torque limit, 3 - 9
overload warning, 3 - 79	jog speed, 3 - 45
positioning complete output, 3 - 73	list, D - 2
running output, 3 - 77	memory switch, 3 - 4, 3 - 44
servo alarm output, 3 - 69	memory switches, 4 - 9
servo ready, 3 - 80	mode switch ON/OFF, 3 - 67
signal ground, 3 - 24	mode switch selection, 3 - 67
signal ground for alarm code output, 3 - 70	motor selection, 3 - 47
signal ground for servo alarm output, 3 - 69	N-OT input signal, 3 - 7
speed coincidence output, 3 - 75	number of encoder pulses, 3 - 46, 3 - 91
speed monitor, 3 - 42	operation at recovery from power loss, 3 - 81
torque limit output, 3 - 10	operation when motor stops after overtravel, 3 - 7
torque monitor, 3 - 42	operation when motor stops after servo OFF, 3 - 8
200-200-200 2 71 6 7	output signal selection, 3 - 10, 3 - 53, 3 - 74, 3 - 79, 3 - 8
overcurrent, 3 - 71, 6 - 7	overflow, 3 - 61
overhanging load	PI/P changeover, 3 - 62
precautions, 2 - 3	position loop gain, 3 - 61
Servomotors, 5 - 24	positioning complete range, 3 - 74, 3 - 75, 3 - 77
·	P-OT input signal, 3 - 7
overload	reference pulse form selection, 3 - 18
alarm, 3 - 79	reference pulse inhibit function, 3 - 40
characteristics, Servopacks, 5 - 22	reference pulse input filter selection function, 3 - 41
warning, 3 - 79	reverse external torque limit, 3 - 11
overload detection level, 5 - 22	reverse external torque limit input, 3 - 12
·	reverse rotation mode, 3 - 5
overload protective function, 5 - 22	reverse rotation torque limit, 3 - 9
overrun, 3 - 71, 6 - 20	rotation direction selection, 3 - 5
overshoot, 3 - 37, 3 - 63	SEN input signal, 3 - 90
oversnoot, 3 - 37, 3 - 63	servo ON input signal, 3 - 73
overspeed, 3 - 71	soft start time, 3 - 56
overtravel, 3 - 6	speed coincidence signal output width, 3 - 76
overalite, 5 - 6	speed limit for torque control I, 3 - 37
overtravel limit function, 3 - 6	speed loop gain, 3 - 60
limit switch, 3 - 6	speed loop integration time constant, 3 - 60
	speed reference gain, 3 - 16, 3 - 37
	stopping motor at servo OFF, 3 - 8, 3 - 50
Р	stopping the motor at overtravel, 3 - 7
•	time delay from brake signal output to servo OFF, 3 - 54
P control, 3 - 62, 3 - 63	torque control, 3 - 32
	torque feed-forward function selection, 3 - 38
P-OT input signal, 3 - 7	torque limit output, 3 - 10
parameter setting error, 6 - 7	torque reference filter selection, 3 - 59
•	torque reference filter time constant, 3 - 58
parameter setting mode, 4 - 9	torque reference gain, 3 - 37, 3 - 38, 3 - 39
parameters, 3 - 4, 3 - 5, 3 - 7, 3 - 44, 4 - 9	torque restriction by analog voltage reference, 3 - 39
bias, 3 - 63	zero-clamp speed control, 3 - 51
brake signal output timing during motor operation, 3 - 55	zero-speed level, 3 - 78
brake signal speed level output during motor operation, 3 - 55	zero-clamp level, 3 - 52
control mode selection, 3 - 12, 3 - 15	, ,
dividing ratio setting, 3 - 25, 3 - 96	parameters breakdown, 6 - 6
dividing ratio settings, 3 - 23	peripheral devices
electronic gear ratio, 3 - 30	specifications, 5 - 35
emergency stop torque, 3 - 8	wiring, 2 - 14
encoder power voltage adjustment, 3 - 48	- '
encoder type selection, 3 - 25, 3 - 46, 3 - 91	personal computer, 2 - 15
error counter clear signal selection, 3 - 22	photocoupler output, 3 - 73
feed-forward gain, 3 - 62	PI control, 3 - 62, 3 - 63

position control, 1 - 13, 3 - 23	R
position control loop, 1 - 12, 3 - 58	- •
position error pulse overflow, 3 - 71	radial load, 2 - 10
position feedback, 1 - 12	ratings 200-VAC SGM Servomotors, 5 - 11
position loop, 3 - 51	SGDM Servopacks, 5 - 19
position output, 5 - 21	reference input read error, 3 - 71, 6 - 19
position references, 1 - 12, 1 - 13 inputs, 3 - 17 line driver output, 3 - 17	reference offset, 4 - 28 automatic adjustment, 3 - 49, 3 - 58, 4 - 28 manual adjustment, 3 - 49, 3 - 58
open collector output, 3 - 18	reference pulse, 5 - 20 form, 3 - 19
positioning complete, 5 - 21	input
positioning complete signal, 3 - 73	allowable voltage level, 3 - 21 timing, 3 - 21
positioning time, 3 - 37 minimizing, 3 - 60	reference pulse inhibit function, 3 - 40
power amplifiers, 1 - 9	reference pulse input filter selection function, 3 - 41
power line open phase, 3 - 71	reference pulses, 3 - 41, 3 - 57
,	reference voltage, 4 - 28
power loss, 2 - 13, 3 - 81	regenerative error, 3 - 71
power loss alarm, 3 - 71	regenerative resistor unit, 3 - 88, 5 - 53 dimensional drawings, 5 - 53
power loss error, 6 - 25	specifications, 5 - 53
power ON sequence, 2 - 17	regenerative unit
power rate, rating, 5 - 11	connection, 3 - 88 models, 3 - 88
power rating, 1 - 7	residual voltage, precautions, 2 - 2
Power Ready, 4 - 7, 4 - 8, 4 - 9	reverse overtravel, 3 - 6
power supply voltage, 2 - 2	reverse rotation mode, 3 - 5
precautions, 2 - 2	2CN connector, 3 - 6
pressure control, 3 - 32	parameter, 3 - 5 rising edge, 3 - 22
primary lag characteristics, 3 - 57	rotation, 3 - 7
primary lag filter, 3 - 32	forward, prohibiting, 3 - 7
PROGIC-8, 1 - 10	reverse, prohibiting, 3 - 7
programmable controller, 3 - 14	running output signal, 3 - 77
proportional control, 1 - 9, 3 - 62	c
proportional/integral control, 1 - 9, 3 - 62 signal, 3 - 16	S SEN STATE OF SERVICE
protection, 5 - 21	SEN signal, 3 - 90
protective sequence, 3 - 69	sequence input, 5 - 21 sequence output, 5 - 21
	servo, 1 - 2
pulley, 3 - 29 pulse density, 3 - 22	servo amplifiers, 1 - 9
pulse dividing ratio, 3 - 25	meaning, 1 - 5
pulse generator, 1 - 8	servo drive, meaning, 1 - 4
pulse train, 1 - 13	servo locked status, 3 - 40, 3 - 51
Pulse nam, 1 - 15	servo mechanisms

illustration, 1 - 5	shaft opening, 2 - 8
meaning, 1 - 2	shock, resistance, 5 - 19
servo OFF, 3 - 8	shorting, signal lines, 2 - 30
servo ON input signal, 3 - 72	side by side, installation method, 2 - 13
servomotor, selection flowchart, 5 - 5	smoothing capacitor, 3 - 23
Servomotors, 6 - 2 200-VAC SGM ratings, 5 - 11 200-VAC SGM specifications, 5 - 11	smoothing function, 3 - 57 position reference acceleration/deceleration time constant, 3 57
200-VAC SGM torque-motor speed characteristics, 5 - 13 AC, 1 - 7	soft start function, 3 - 56
induction, 1 - 7	software, version check, 4 - 35
synchronous, 1 - 7	specifications
components, 1 - 7 DC, 1 - 7 dimensional drawings, 5 - 25-5 - 59	1CN connector, 5 - 37 200-VAC SGM Servomotors, 5 - 11 brake power supply, 5 - 49
inspection, 6 - 2	cables, 5 - 35
installation, 2 - 7	encoders, 5 - 43
maintenance, 6 - 2	home position pulse, 3 - 96
meaning, 1 - 4, 1 - 5	incremental pulse, 3 - 96
overhanging load, 5 - 24	noise filter, 5 - 51
selection, 5 - 3	peripheral devices, 5 - 35
machine data table, 5 - 7	regenerative resistor unit, 5 - 53
setting the type, 3 - 47	serial data, 3 - 95
test run, 2 - 29	Servopack/Servomotor combination, 5 - 18 SGDM Servopacks, 5 - 19
Servopacks, 6 - 3	•
AC, gain adjustment, A - 2	speed, rating, 5 - 11
dimensional drawings, 5 - 30	speed bias, 3 - 63
inspection, 6 - 3	speed coincidence output signal, 3 - 75
installation, 2 - 12	speed control, 1 - 12, 3 - 15
instrument connection examples, 6 - 30 internal connection diagram, 6 - 30	position/torque control, 3 - 15
maintenance, 6 - 3	zero-clamp, 3 - 15
meaning, 1 - 4	
overload characteristics, 5 - 22	speed control loop, 1 - 12
position control	speed control mode, 3 - 64
autotuning, A - 8	speed control range, 5 - 20
manual adjustment, A - 9	speed loop, 3 - 32
ratings, 5 - 19 selection, 5 - 9	speed reference offset, manual adjustment mode, 4 - 30
according to the motor, 5 - 10	speed references, 1 - 12, 3 - 13
specifications, 5 - 19	gain, 3 - 16
speed-control	inputs, 3 - 13
autotuning, A - 4	speed regulation, 5 - 20
manual adjustment, A - 5	• •
test run, 2 - 31	standard setting, 3 - 5
servos	starting time, 5 - 23
alarm output, 3 - 69	status display mode, 4 - 6
alarm reset, 4 - 4	stop mode, setting, 3 - 49
control systems, meaning, 1 - 4	•
gain adjustment, 3 - 57, 3 - 60	stop torque, 3 - 8
meaning, 1 - 4	stopping time, 5 - 23
setting mode, 4 - 5	storage temperature, servomotor, 2 - 7
setting time, 3 - 63	structure, 5 - 19

surge suppressor, 5 - 52

without alarm display, 6 - 28 motor, 3 - 72 twisted-pair cables, 3 - 82 temperature, ambient/storage, 5 - 19 tension control, 3 - 32 termination resistor, 3 - 23 test run, 2 - 27, 2 - 33 undershoot, 3 - 37, 3 - 63 minimum parameters, 2 - 36 motor alone, 2 - 29 motor connected to the machine, 2 - 33 position control from the host controller, 2 - 35 servomotor with brake, 2 - 34 variable resistor, dimensional drawings, 5 - 64 thermal relays, 5 - 63 vibration acceleration, 5 - 17 thrust load, 2 - 10 vibration class, 5 - 17 timing belt, 1 - 6 vibration resistance, 5 - 17, 5 - 19 torque, rating, 5 - 11 voltage regulation, 5 - 20 torque control, 3 - 9, 3 - 32 voltage resistance test, 2 - 3 torque feed-forward function, 3 - 37 reference, 3 - 37 torque limit wiring, 2 - 14, 2 - 17, 3 - 6, 3 - 82 input signals, 3 - 12 grounding, 3 - 84 output signal, 3 - 10 main circuit, 2 - 17 value, 3 - 39 more than one servo drive, 3 - 87 torque reference, 1 - 13 noise control, 3 - 83 peripheral devices, 2 - 14 torque reference filter time constant, 3 - 58 precautions, 2 - 2, 3 - 82 torque restriction function, 3 - 11 shorting, 2CN connector, 3 - 6 by analog voltage reference, 3 - 39 torque limit value, 3 - 11 Ζ torque-motor speed characteristics, 5 - 13 trapezoidal screw thread, 1 - 6 zero-clamp, 3 - 15, 3 - 51 troubleshooting conditions, 3 - 52

alarm display, 6 - 5

∑ Series SGMB/SGDB **USER'S MANUAL**

TOKYO OFFICE

New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo 105-6891 Japan Phone 81-3-5402-4511 Fax 81-3-5402-4580

YASKAWA ELECTRIC AMERICA, INC.

Phone 1-847-887-7000 Fax 1-847-887-7370

MOTOMAN INC. HEADQUARTERS

805 Liberty Lane West Carrollton, OH 45449, U.S.A. Phone 1-937-847-6200 Fax 1-937-847-6277

YASKAWA ELÉTRICO DO BRASIL COMÉRCIO LTDA.

Avenida Fagundes Filho, 620 Bairro Saude-Sao Páulo-SP, Brazil CEP: 04304-000 Phone 55-11-5071-2552 Fax 55-11-5581-8795

YASKAWA ELECTRIC EUROPE GmbH

Am Kronberger Hang 2, 65824 Schwalbach, Germany Phone 49-6196-569-300 Fax 49-6196-888-301

Motoman Robotics Europe AB

Box 504 S38525 Torsås, Swe Phone 46-486-48800 Fax 46-486-41410

Motoman Robotec GmbH

Kammerfeldstraße 1, 85391 Allershausen, Germany

Phone 49-8166-900 Fax 49-8166-9039

YASKAWA ELECTRIC UK LTD. 1 Hunt Hill Orchardton Woods Cumbernauld, G68 9LF, United Kingdom Phone 44-1236-735000 Fax 44-1236-458182

YASKAWA ELECTRIC KOREA CORPORATION

Ktpa Bkdg #1201, 35-4 Youido-dong, Yeongdungpo-Ku, Seoul 150-010, Korea Phone 82-2-784-7844 Fax 82-2-784-8495

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151 Lorong Chuan, #04-01, New Tech Park Singapore 556741, Singapore Phone 65-282-3003 Fax 65-289-3003

YASKAWA ELECTRIC (SHANGHAI) CO., LTD.

4F No.18 Aona Road, Waigaograo Free Trade Zone, Pudong New Area, Shanghai 200131, China Phone 86-21-5866-3470 Fax 86-21-5866-3869

YATEC ENGINEERING CORPORATION

Shen Hsiang Tang Sung Chiang Building 10F 146 Sung Chiang Road, Taipei, Taiwan

Phone 886-2-2563-0010 Fax 886-2-2567-4677

YASKAWA ELECTRIC (HK) COMPANY LIMITED Rm. 2909-10, Hong Kong Plaza, 186-191 Connaught Road West, Hong Kong Phone 852-2803-2385 Fax 852-2547-5773

BEIJING OFFICE

Room No. 301 Office Building of Beijing International Club, 21 Jianguomenwai Avenue, Beijing 100020, China Phone 86-10-6532-1850 Fax 86-10-6532-1851

TAIPEI OFFICE

Shen Hsiang Tang Sung Chiang Building 10F 146 Sung Chiang Road, Taipei, Taiwan Phone 886-2-2563-0010 Fax 886-2-2567-4677

SHANGHAI YASKAWA-TONGJI M & E CO., LTD.

27 Hui He Road Shanghai China 20043'

Phone 86-21-6531-4242 Fax 86-21-6553-6060

BEIJING YASKAWA BEIKE AUTOMATION ENGINEERING CO., LTD.

30 Xue Yuan Road, Haidian, Beijing P.R. China Post Code: 100083

Phone 86-10-6233-2782 Fax 86-10-6232-1536

SHOUGANG MOTOMAN ROBOT CO., LTD.

7, Yongchang-North Street, Beijing Economic Technological Investment & Development Area, Beijing 100076, P.R. China

Phone 86-10-6788-0551 Fax 86-10-6788-2878

YASKAWA ELECTRIC CORPORATION